

PO Box 8146 <u>TUMBI UMBI</u> NSW 2261 Office: 02 4340 0193 Mobile: 0428 884645 Email: larrycookconsulting@gmail.com

CONCEPT WASTEWATER MANAGEMENT PLAN FOR PROPOSED SUBDIVISION

Lot 100 in DP1064980 792 Seaham Road Seaham

for

B. Statham

<u>Distribution</u> B. Statham (1) File (1)

Rep.No. 18047-A 15th May 2018

CONTENTS

Page

1.	INTRC	NTRODUCTION AND BACKGROUND1								
2.	INVES	NVESTIGATOR1								
3.	EXIST	XISTING DEVELOPMENT2								
4.	PROP	OSED DEVELOPMENT2								
5.	SITE I	NFORMATION								
6.	SITE A	SSESSMENT								
7.	ON-SI	TE WASTEWATER MANAGEMENT PLAN4								
	7.1	CLIMATE4								
	7.2	SOIL INVESTIGATIONS AND ASSESSMENT								
	7.3	HYDRAULIC LOAD								
	7.4	SYSTEM SELECTION								
	7.5	WASTEWATER TREATMENT SYSTEM 12								
	7.6	WASTEWATER DISPOSAL								
	7.7	SUB-SURFACE DRIP IRRIGATION 14								
	7.7	1 Calculations 14								
	7.7	2 Nutrient Calculations 15								
	7.7	.3 Design Sub-Surface Drip Irrigation								
	7.8	RESERVE APPLICATION AREA 20								
	7.9	FLOOD HAZARD								
	7.10	ACID SULPHATE SOIL HAZARD 20								
	7.11	CUMULATIVE IMPACT ASSESSMENT								
	7.12	DIVERSION DRAIN								
	7.13	BUFFER DISTANCES								
8.	CONC	LUSIONS AND RECOMMENDATIONS								
9.	REFE	RENCES								

TABLES

Table 1	Register of New Lots
Table 2	Summary Climate Statistics – Williamtowm RAAF
Table 3	Soil Test Parameters
Table 4	Summary Soil Test Results and Ratings
Table 5	Assessment of Limitations for On-site Disposal of Treated Effluent
Table 6	Summary Disposal Area Calculations
Table 7	Summary Results of Nutrient Calculations
Table 8	Pathogen Transport Model Assumptions and Results
Table 9	Buffer Distances

FIGURES

Figure 1	Lot Plan
Figure 2	Location of Site
Figure 3	Site Plan Showing Proposed Subdivision Layout
Figure 4	Contour Plan
Figure 5	Locations Soil Test Holes
Figure 6	Areas Suitable for Wastewater Application
Figure 7	Design Sub-Surface Irrigation
Figure 8	Example Layout 'Netafim' Sub-Surface Irrigation
Figure 9	Acid Sulphate Mapping
Figuro 10	Diversion Drain Design

Figure 10 Diversion Drain Design

APPENDICES

- Appendix A Water Balance and Calculations for Sub-Surface Irrigation Four Bedrooms
- Appendix B Water Balance and Calculations for Sub-Surface Irrigation Five Bedrooms
- Appendix C Soil Bore Logs
- Appendix D Soil Test Results

1. INTRODUCTION AND BACKGROUND

As requested by *B. Statham* (the owner), *Larry Cook Consulting* has conducted a wastewater treatment and disposal investigation on 17 proposed new allotments created by the proposed subdivision of Lot 100 in DP1064980 Seaham Road Seaham, lower Hunter Valley (the Site). The location of the Site is shown in a lot plan presented in **Figure 1** and on an aerial photo in **Figure 2**. A plan of the proposed subdivision showing the 18 new lots is presented in **Figure 3**. A contour plan is presented in **Figure 4**.

The site is not connected to the municipal sewerage system and as such, Port Stephens Council (Council) requires the preparation of a Wastewater Management Plan (WMP for the new On-Site Sewerage Management systems (OSSMs).

A WMP in this part of the local government area (LGA) must be prepared in accordance with Council's Development Assessment Framework (DAF) which was developed in 2011. The DAF adopts a risk based approach for the design of safe and sustainable On-Site Sewerage Management systems in the LGA and as such, sets out minimum requirements for the assessment, design and construction of these systems. A review of the DAF and advice recently obtained from Council reveals that the Site is a High Hazard Allotment in terms of application of treated wastewater. This WMP addresses the assessment requirements, particularly the minimum standards listed in Table 6.1 for High Hazard Allotments and Section 6 in the DAF.

This WMP provides a strategy for the design of a new On-Site Sewerage Management system (OSSM) for each proposed new allotment. The OSSM system is designed to:

- 1. Dispose of treated effluent on-site using an approved and effective methodology in accordance with the Environmental Health Protection Guidelines (DLG 1998) and AS/NZS 1547:2012 (SAI & NZS 2012).
- 2. Meet the environmental and health *Performance Objectives* documented in the Environmental Health Protection Guidelines (DLG 1998) which ensure that onsite sewage management for single households is appropriate and will not affect public health or the environment.

These objectives are detailed in Section 7.1.

2. INVESTIGATOR

Larry Cook, an environmental scientist and geoscientist undertook the effluent disposal management investigation. Larry Cook is qualified to carry out such investigations.

3. EXISTING DEVELOPMENT

The Site is a largely cleared and partly developed parcel of land. A *Google Earth* image over the Site showing existing conditions is presented in **Figures 1 and 3**. Existing infrastructure includes a single storey dwelling, garage, pool and shed in the northern corner of the Site. Two small farm dams are located on the Site; one in the north-western part and the other in the north-eastern part (**Figure 3**).

It is understood that wastewater generated from the existing dwelling is treated to primary standard in a Council-approved septic tank with disposal via an absorption trench system. The exact location and specifications of the disposal area are unknown but the site inspection did not reveal any wet areas.

4. PROPOSED DEVELOPMENT

The owner proposes to subdivide Lot 100 into 18 variably-sized new allotments. The proposed new lots and their layout are shown in **Figure 3**. The lots and respective areas are listed in **Table 1**.

Table 1 Register of New Lots								
New Lot	Area (ha)	New Lot	Area (ha)					
1	2.65	10	2.00					
2	2.00	11	2.61					
3	2.00	12	2.60					
4	2.00	13	2.00					
5	2.30	14	2.00					
6	2.37	15	2.00					
7	2.04	16	2.15					
8	2.00	17	2.17					
9	2.00	18	4.11					

It is noted that the new allotments are all greater than 4,000 m² in size which is a trigger for certain additional investigations and assessments in the DAF.

It is also noted that new proposed Lot 18 hosts the existing dwelling which, according to the owner, will remain and the OSSM retained subject to Council approval. Access to the new allotments will be off Sophia Jane Drive at the southern end of the subdivision. Sophia Jane Drive is off Seaham Road.

For the purposes of calculating the design hydraulic load for each new allotment, an equivalent five bedroom dwelling is adopted which may include four bedrooms and an office/study the latter of which must be included as a potential bedroom particularly if it is similar in size (and layout) to the bedrooms, can fit a bed and has a built-in wardrobe.

The municipal sewerage system is not presently connected to the Site and, as such, Port Stephens Council (Council) requires the development of an On-Site Seweage Management (OSSM) system for any proposed development on each new allotment.

5. SITE INFORMATION

Lot 100 (the Site) is a multi-sided parcel of vacant rural land oriented broadly northsouth and approximately 44 ha in area. The Site is in the Parish of Seaham, County of Durham and in the Port Stephens Council local government area (LGA). The western boundary of the Site fronts Seaham Road (**Figure 2**).

The Site is surrounded by partly developed rural and rural-residential land. There is mains power and town water available to the land but <u>no</u> municipal sewerage system.

6. SITE ASSESSMENT

The Site is located on the eastern-facing flank of a north-south oriented relatively low-lying ridge system. The flank slopes down to the east into an extensive wide flood plain associated with the former and present Williams River located approximately 3.2 km east of the Site. The Site is undulating and straddles a local topographic high with gentle to moderate slopes to the north, east and south.

The elevation of the subdivision varies between approximately 10 and 15 m Australian Height Datum (AHD). The eastern and south-eastern parts and northwestern corner of the Site are bordered by wetlands. No defined drainages are observed on the Site.

A ground contour plan is presented in **Figure 4**. The Site straddles a northnortheasterly trending ridge (topographic high) at elevation 15 m AHD. The land is observed to slope to the west from this topographic high at an average slope of 1 in 8 (12 %), to the south at an average slope of 1 in 8 (12 %) and to the east towards the Williams River flood plain at an average slope of 1 in 8 (12 %).

The subdivision is interpreted to be underlain by overlying Permian Sedimentary rocks belonging to the Branxton Formation of the Maitland Group consisting mainly of a sequence of interbedded flat-lying sandstone, siltstone and conglomerate. Based on the soil investigations carried out as part of this study over the subdivision, the

types of sedimentary rocks in this area and soil development are observed to be similar.

The Site is largely cleared with isolated pockets of open tall eucalypts observed during the field investigations.

7. ON-SITE WASTEWATER MANAGEMENT PLAN

7.1 CLIMATE

Sun and wind exposure over the Site is observed to be excellent. No temperature, evaporation and rainfall data are available for the Site. Based on temperature data from the official BOM station at Williamtown RAAF (Station No. 061078), mean daily maximum temperatures for the land are expected to be always greater than 15°C (**Table 1**). Williamtown RAAF station was used because it is by far the closest official weather station with official pan evaporation data. Rainfall statistics for Williamtown RAAF are also provided in **Table 2**.

The water balance calculations utilised in the hydraulic balance (**Appendices A and B**) are based on the temperature, rainfall and mean monthly pan evaporation data acquired from Williamtown RAAF and is believed to be the best meteorological values available for the subject land.

Sumn	nary	Clim	ate S	Statis	tics -	Tab - Wil	-	ntow	n R/	AAF ((Sta	tion	06107	'8)	
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	٢	'ears
					Т	empe	ratur	е							
Mean maximum temperature (°C)	28.0	27.5	26.2	23.6	20.3	17.6	17.0	18.6	21.3	23.6	25.4	27.3	23.0	61	1942 2011
Mean minimum temperature (°C)	18.0	18.1	16.3	13.2	10.1	7.9	6.4	6.8	9.1	12.0	14.3	16.5	12.4	61	1942 2011
						Rair	fall								
Mean rainfall (mm)	96.8	120.5	120.1	105.8	115.1	122.3	72.3	75.8	60.1	74.5	81.6	79.5	1123.6	64	1942 2011
Decile 5 (median) rainfall (mm)	77.2	95.6	110.6	85.3	102.8	102.4	72.8	60.2	49.7	56.2	82.0	61.8	1083.0	59	1942 2011
Mean number of days of rain ≥ 1 mm	11.9	11.9	12.9	11.5	12.7	12.5	10.2	10.2	9.6	11.7	11.8	11.0	137.9	59	1942 2011
	Evaporation														
Mean Evaporation (mm)	213.9	173.6	151.9	114	83.7	72	80.6	111.6	141	170.5	189	223.2	1725	37	1974 2011

Larry Cook Consulting

7.2 SOIL INVESTIGATIONS AND ASSESSMENT

The reader is referred to the *Soil Landscapes of the Newcastle 1:100,000 Sheet* Report (Matthei, 1995). The soils beneath the Site are grouped with the Bolwarra soil landscape which is developed on rolling hills overlying Permian Sedimentary rocks belonging to the Branxton Formation of the Maitland Group in this area.

Detailed soil investigations including representative multi-depth soil sampling and testing was carried out over the whole subdivision. The objectives are to:

- assess the type and depth of soils, and chemistry across the whole subdivision;
- determine any significant variation of these parameters across the subdivision, if it indeed exists; and
- assess for any potential for cumulative impacts on the environment from the creation of the sub-division.

That is, describe and classify the soil over the Site and subdivision, determine the range of the depths of the soil profile developed atop the Carboniferous sedimentary and volcanic rock sequence and establish any potential variations of these parameters across the sub-division. A total of 25 soil holes were drilled over the subdivision. The locations of the soil test sites are shown in **Figure 5**. Soil bore logs are provided in **Appendix C**.

In summary, the soil investigations on the Site revealed a relatively thin 0.1 to 0.2 mthick layer of organic-rich silty sandy loam topsoil overlying silty sandy clay loam which grades down into residual light to medium clay. Groundwater was not encountered in the investigations.

The soils were classified according to the textural classification in AS/NZS 1547:2012. The textural classification of the Silty Sandy LOAM encountered down to approximately 0.20 m beneath the majority of the Site allows a determination of its expected permeability in accordance with Table 5.1 of AS/NZS 1547:2012 (SAI & NZS, 2012). The indicative permeability value (K_{sat}) for a weakly structured loam is predicted to be between approximately 0.5 and 1.5 m/d with an expected Design Loading Rate (DLR) of approximately 30 mm/day (Table L1 in Appendix L, AS/NZS 1547:2012) and a Design Irrigation Rate (DIR) of approximately 4 mm/day (approximately 28 mm/week) (Table M1 in Appendix M).

Although the disposal of treated wastewater would be within the silty sandy LOAM described above, the silty sandy loam is underlain by a colluvial-residual Clay LOAM grading down into a light to medium CLAY which must be taken into consideration in designing the on-site disposal of wastewater.

Table R1 in AS/NZS 1547:2012 recommends a vertical separation distance of between 0.60 and 1.5 m between the effluent application depth and any groundwater

or restrictive soil conditions. This is referred to as the limiting layer. The results of the site investigations indicate that the light to medium clay is the limiting layer which is intersected at approximately 0.20 to 0.30 m beneath the majority of the Site. Therefore the DIR or DLR should be based on the most limiting soil horizon occurring within the 0.60 m separation distance from the zone of effluent application.

In this regard, taking into consideration the limiting light to medium clay horizon at approximately 0.20 to 0.30 m depth, the indicative saturated hydraulic conductivity value of weakly structured Clay LOAM or a strongly structured light/medium CLAY is predicted to be between approximately 0.06 and 0.12 m/d with an expected DIR of approximately 21 mm/week (7 mm/day) and a DLR of approximately 12 mm/day. In this regard, a DLR of 12 mm/day and a DIR of 21 mm/week are considered appropriate for any calculations of the size of a Land Application Area (LAA) for each new allotment.

Soil samples were collected from the silty sandy loam topsoil in each test hole and underlying clay in a representative number of holes. Samples were submitted to a NATA accredited laboratory for the following tests listed in **Table 3**

	Table 3 Soil Test Parameters
• • • •	pH Electrical Conductivity (EC) Exchangeable Sodium Capacity (ESP) Cation Exchange Capacity (CEC) Phosphorus Sorption (P Sorp) Modified Emerson Class (EAT)

A copy of the analytical certificate for soil testing over the whole subdivision is provided in **Appendix D**. Soil test results are summarised in **Table 4**.

The results of the soil testing indicate the following:

- The soils are strongly acidic with **pH values** between 4.3 and 5.1. The recorded pH values are typical of soils in the district and wider region. They should not pose any constraints for the on-site disposal of treated wastewater. Anecdotal evidence from investigations in these soil types in the region suggests that turf and plant growth does not appear to be affected in any way. If required, the soil pH can be raised by the addition of lime.
- The soils are non-saline with **Electrical Conductivity (EC)** measurements recorded between 0.08 and 0.51 dS/cm.
- The **Cation Exchange Capacity (CEC)** results indicate a very low to low risk of adversely impacting on the structural stability and nutrient availability for plants and a medium risk for the underlying clay loam and clay soil. The CEC is the capacity of the soil to hold and exchange cations. It is a major controlling agent

for soil structural stability, nutrient availability for plants and the soils' reaction to such media as fertilisers (Hazelton & Murphy, 2007).

- The **Exchangeable Sodium Percentage (ESP)** results reveal that all soils samples tested on the Site are non-sodic. The ESP is an important indicator of sodicity, which affects soil structural stability and susceptibility to dispersion.
- The **Phosphorus Sorption (P-sorption)** results reveal a medium high to very high limitation which, from numerous soil investigations in the district and wider region, is not uncommon. The phosphorus sorption capacity of a soil is an important feature that relates to the potential for a soil to bind any phosphorus that may not be utilised by the plants within wastewater disposal area.
- The **Emerson Aggregate Test (EAT)** is a measure of soil dispersibility and susceptibility to erosion and structural degradation. The soil testing revealed a low risk of dispersion for all soil samples tested.

In summary, the comprehensive soil testing program indicates that the soils on the Site are suitable for the application of treated wastewater subject to sufficient available land on each new allotment.

	Table 4 Summary Soil Test Results and Ratings													
Sample ID	Soil Category	Depth (m)	pH (pH units) ¹	Rating	EC (dS/m) ²	Rating	CEC (cmol⁺/kg)³	Rating	ESP (%)⁴	Rating	PSorp (mg/kg)⁵	Rating	EAT ⁶	Rating
SBH 1	L	0.30	4.8	SA	0.30	NS	4.3	VL	0.5	NS	320	MH	8	L
SBH 2	L	0.20	4.8	SA	0.16	NS	2.9	VL	0.3	NS	260	MH	6	L
SBH 2	ClayL-C	0.80	4.7	SA	0.18	NS	10.2	L	0.2	NS	630	VH	8	L
SBH 3	L	0.15	4.4	SA	0.17	NS	4.2	VL	0.5	NS	340	MH	7	L
SBH 4	L	0.20	4.7	SA	0.15	NS	3.8	VL	0.5	NS	290	MH	7	L
SBH 4	ClayL-C	0.60	4.4	SA	0.23	NS	12.6	М	2.1	NS	670	VH	8	L
SBH 5	L	0.30	4.7	SA	0.18	NS	6.8	L	0.7	NS	450	Н	8	L
SBH 6	L	0.10	4.7	SA	0.23	NS	3.3	VL	0.3	NS	320	MH	6	L
SBH 6	ClayL-C	0.50	4.3	SA	0.42	NS	13.1	М	4.5	NS	680	Н	8	L
SBH 7	L	0.10	4.5	SA	0.28	NS	4.2	VL	0.2	NS	340	MH	6	L
SBH 8	L	0.10	4.4	SA	0.27	NS	4.7	VL	0.4	NS	400	Н	6	L
SBH 8	ClayL-C	0.50	4.3	SA	0.23	NS	12.0	L	1.8	NS	660	Н	8	L
SBH 9	L	0.15	4.5	SA	0.30	NS	5.4	VL	0.4	NS	440	Н	6	L
SBH 10	L	0.10	4.6	SA	0.24	NS	5.2	VL	0.6	NS	420	Н	6	L
SBH 10	ClayL-C	0.50	4.3	SA	0.23	NS	11.3	L	0.5	NS	690	Н	8	L
SBH 11	L	0.20	4.6	SA	0.19	NS	3.9	VL	0.5	NS	300	MH	6	L
SBH 12	ClayL-C	0.20	4.6	SA	0.15	NS	3.9	VL	0.8	NS	310	MH	8	L

Larry Cook Consulting

$Wastewater\ Management\ Plan-Proposed\ Subdivision$

Page 9

Lot 100 in DP1064980 792 Seaham Road Seaham

SBH 13	L	0.20	4.7	SA	0.24	NS	6.3	L	0.2	NS	430	Н	7	L
SBH 13	ClayL-C	0.50	4.5	SA	0.22	NS	11.1	L	2.7	NS	700	Н	7	L
SBH 14	L	0.30	4.7	SA	0.23	NS	4.4	VL	0.5	NS	350	MH	6	L
SBH 15	L	0.15	4.5	SA	0.20	NS	6.5	L	0.3	NS	460	Н	6	L
SBH 16	L	0.20	4.5	SA	0.27	NS	5.0	VL	0.3	NS	400	Н	6	L
SBH 16	ClayL-C	0.50	4.3	SA	0.51	NS	12.8	М	4.5	NS	720	Н	8	L
SBH 17	L	0.20	4.3	SA	0.43	NS	5.5	VL	0.4	NS	430	Н	6	L
SBH 17	ClayL-C	0.60	4.1	SA	0.46	NS	11.3	L	1.0	NS	670	Н	7	L
SBH 18	L	0.15	4.2	SA	0.45	NS	5.0	VL	0.6	NS	380	MH	8	L
SBH 19	L	0.20	4.3	SA	0.42	NS	3.8	VL	1.2	NS	320	MH	8	L
SBH 20	L	0.30	4.5	SA	0.37	NS	4.2	VL	0.9	NS	330	MH	6	L
SBH 21	L	0.30	5.1	SA	0.08	NS	3.9	VL	0.3	NS	310	MH	7	L
SBH 22	L	0.20	4.4	SA	0.12	NS	3.3	VL	0.3	NS	300	MH	7	L
SBH 23	L	0.20	4.7	SA	0.21	NS	3.4	VL	0.6	NS	350	MH	6	L
SBH 23	ClayL-C	0.70	4.0	SA	0.22	NS	14.5	М	0.7	NS	740	Н	8	L
SBH 24	L	0.30	4.5	SA	0.28	NS	3.1	VL	0.3	NS	290	MH	6	L

Soil Categories: L: loam, CL: clayey loam, ClayL: clay loam, C: Clay	
1. pH: Measure of acidity. SA: strongly acidic, MA: moderately acid, SA: slightly acid, N: neutral	(Hazelton & Murphy, 2007)
2. EC: Measure of salinity. NS: non-saline, SS: slightly saline, MS: moderately saline, HS: highly saline, ES: extremely saline	(Hazelton & Murphy, 2007)
3. CEC: Capacity of the soil to hold and exchange cations. VL: very low, L: low, M: medium, H: high, VH: very high	(Hazelton & Murphy, 2007)
4. ESP: Indicator of sodicity regarding soil structural stability and susceptibility to dispersion. NS: non-sodic, S: sodic, SS: strongly sodic, VSS: very strongly sodic	(Hazelton & Murphy, 2007)
 5. PSorp: Capacity of a soil to bind any phosphorus. VL: very low, L: low, M: medium, H: high, MH: medium high, VH: very high 6. EAT: Potential of susceptibility for dispersion. H: high, M: moderate, L: low 	(Hazelton & Murphy, 2007)

7.3 HYDRAULIC LOAD

It is understood that the reticulated town water supply will be available to any new development on the 18 new allotments. The number of total equivalent bedrooms adopted in this concept WMP is five which allows for dedicated five bedrooms or a configuration comprising four bedrooms and a study. The design of the hydraulic load adopts standard water reduction fixtures as defined in AS/NZS 1547:2012. Based on this scenario, the design maximum wastewater production is approximately 150 L/person/day (Table H1 in Appendix H in AS/NZS 1547:2012). The adopted wastewater allowance is consistent with Section 6.2 and Table 6.2 of the DAF which prescribes a wastewater allowance of 150 L/person/day for a residential development on reticulated (town) water supply.

Consistent with AS/NZS 1547:2012 and Council's DAF, the calculation of the hydraulic load adopts a design total of eight persons for the equivalent five bedrooms (Council directed 1.6 persons per bedroom). Therefore the Design Hydraulic Load for the calculations for an equivalent **five bedrooms** is 1,200 L/day.

```
Design Hydraulic Load (5 bedrooms): 1,200 L/day
```

In comparison, the Design Hydraulic Load for an equivalent **four bedrooms** is 960 L/day.

Design Hydraulic Load (4 bedrooms): 960 L/day

7.4 SYSTEM SELECTION

In terms of the application of treated wastewater on the proposed allotments in the Site, the potential global limitations for the Site have been reviewed, assessed and the results summarised in **Table 5**. Positive site attributes include excellent sun and wind exposure over each allotment, relatively gentle sloping ground, locally moderate draining loamy sand soils and healthy grass cover.

	T Limitations for O 100 DP1064980 7			stewater
Feature	Site	Capable level (Low Limitation)	Marginal Level (Mod. Limitation)	Unsuitable Level (High Limitation)
Proximity to any drainages	> 40 m to any surface water bodies	х		
Depth to bedrock (m)	> 1.00 m	Х		
Depth to Water Table (m)	> 1.00 m	Х		
Soil Permeability	Loam topsoil to 0.3 m (0.5-1.5 m/day)	Х		
	Clay loam/light- med clay to 1.1 m (0.06-0.12 m/day)		х	
Soil Drainage	Moderate		Х	
Coarse Fragments (%)	< 20 % (none recorded in soil investigations)	х		
Bulk Density (g/cm ³)	~1.5		Х	
pH (pH units)	4.3 – 5.1		Х	
Electrical Conductivity (dS/m)	0.08 – 0.51	Х		
Sun/wind Exposure	Excellent	Х		
Flood Potential	Nil on upper parts of allotments	Х		
Slope (%)	< approx. 5 - 12%		Х	
Landform	Undulating		Х	
Run-on seepage	Low	Х		
Erosion Potential	Low	Х		
Site Drainage	Moderate		Х	
Site Fill	nil	Х		
Practical Available Land Area (m ²)	> 1,000 m ² per allotment	Х		

7.5 WASTEWATER TREATMENT SYSTEM

Although, according to Council's DAF and AS/NZS 1547:2012, primary treatment of wastewater generated from any development on the 18 allotments is not precluded, the high hazard classification of the Site and surrounding sensitive environment, wastewater generated from any proposed developments should be treated to secondary standard using a Department of Health approved *Aerated Water Treatment System* (AWTS) or similar system. A NSW Health-approved AWTS is

considered suitable for developments on the Site and is therefore recommended for installation.

In summary, the AWTS is a small-scale sewage treatment system that is suitable for single households. The system consists of one or two tanks of 3,000 L minimum capacity containing a series of chambers. Through a series of treatment and disinfection processes, the wastewater is transformed into non-potable water that can be applied to lawns and gardens or disposed in several approved ways. The treatment process incorporates clarification, aeration, biological treatment and disinfection (chlorination and/or UV treatment). The discharge water is treated to a secondary standard. Typical final wastewater nutrient levels for an AWTS are 20 to 50 mg/L Total N and 8 to 18 mg/L Total P.

The location of the treatment system on each new allotment can be chosen by the installer or licensed plumber to suit any proposed building and plumbing arrangements.

The installation of any AWTS will not be in a flood hazard area, specifically the 1 % AEP flood level and, as such, special conditions on its installation (placement of electrics and lid sealing) will not be required.

7.6 WASTEWATER DISPOSAL

A review of site limitations, results of the soil investigations and review of topography, locations of any vegetation communities has resulted in the delineation of areas on each new allotment considered suitable for the disposal of minimum secondary treated wastewater. The nominated areas are effectively wastewater disposal envelopes that incorporate the building envelopes.

The areas considered suitable for the disposal of treated wastewater on each new allotment are shown in **Figure 6**. The position of the Land Application Area (LAA) for each new allotment takes into account the guideline buffer setback distances from the property boundaries, any surface water bodies, mapped areas of potential/actual acid sulphate soils, vegetation, access driveways, the 1 % AEP flood extent and predicted distance for viral die-off.

The nominated areas have excellent sun and wind exposure and satisfactory soil development. Disposal methods considered suitable for the new allotments include sub-surface drip irrigation, surface spray irrigation, Wisconsin sand mound, amended soil mound, ETA beds and conventional absorption beds.

Section 6.4.2 of Council's DAF provides four key principles for the effective design of an on-site land application system based on significant Australian and overseas research into the factors that influence the performance of the systems. These are reproduced from the DAF as follows:

- Intermittent dosing / resting allows time for aerobic breakdown of the biomat or biofilms that form on soil surfaces. It also encourages breakdown of nutrients and other pollutants. During wet, cool conditions it minimises opportunities for saturated soil conditions.
- **Division of land application areas into sub-zones** goes hand in hand with intermittent dosing and provides additional redundancy into a design in the event of minor component failure.
- **Provision of more than 600mm of unsaturated soil** between the point of application and limiting layers (e.g. bedrock or weathered rock) or groundwater has been shown in a range of soils to deliver a high level of effluent polishing and disinfection. In some cases this may require the use of raised irrigation beds.
- **Even effluent distribution** using pressure dosing (e.g. pressure compensating drip irrigation or LPED) maximises the active surface area of a land application system and minimises the potential for localised failure due to variable levels.

In accordance with best industry practice and preferred method of disposal in Council's DAF, pressure compensated sub-surface drip irrigation is the preferred method of disposal.

7.7 SUB-SURFACE DRIP IRRIGATION

7.7.1 Calculations

Design parameters and calculations for the design five bedrooms are provided in **Appendix A**. Design parameters and calculations for the design four bedroom scenario are provided in **Appendix B**. The calculations of the disposal area proposed for the Site are summarised in **Table 6**. The calculations are based on an equivalent four and five bedroom scenario for a new dwelling on each new allotment.

Therefore, the proposed total primary application area required to accept the design hydraulic loads of 960 and 1,200 L/day with full wet weather storage, a satisfactory 50 year phosphorus adsorption life and the uptake of the total nitrogen is approximately 700 to 850 m² respectively.

Table 6 Summary Disposal Area Calculations						
		be	ivalent 4 drooms persons)	Equivalent 5 bedrooms (8 persons)		
Hyd	Iraulic Load (L/day)		960	1,200		
	Area (m	1 ²)				
Mini	mum Area Method		248	310		
	ninated Area Method full wet weather age		700	850		
100	% Nitrogen Uptake		282	353		
50-y	vear Phosphorus Life		306	382		
	oosed Application Area st Limiting)	7	'00 m ²	850 m ²		
•	pted Application Area	7	'00 m ²	850 m ²		
Para	ameters and Assumptions:					
1. 2. 3. 4. 5. 6. 7.	Total N Total P Indicative Permeability: Design Irrigation Rate (DIR Effective Absorption Depth Soil Phosphorus Sorption (Soil Treatment:	:	20 mg/L 8 mg/L 0.5 and 1.5 m/c m/day 21 mm/wk 0.70 m 4,725 kg/ha Nil	d overlying 0.06-0.12		

7.7.2 Nutrient Calculations

The nutrient calculations and results are provided in the third spread sheet in **Appendices A and B**. The calculations are comprehensive and take into all relevant parameters and values based on the current literature. The basic formula used to calculate the area requirements based on nitrogen and phosphorus loadings are taken from the Environmental Health Protection Guidelines (DLG 1998) and are provided below in support of the model calculations in **Appendices A and B**.

The critical Total Nitrogen loading rate used in the example on Page 153 in the Environment and Health Protection Guidelines (DLG, 1998) is a 'nominal' loading rate of 25 mg/m²/day. The calculations in this WMP adopt a rate of 68 mg/m²/day which is consistent with the calculations used by other workers. According to our literature research, this is considered to be a conservative level and is used in the calculations below. The source publication is a landmark paper on nitrogen in wastewater written by Bob Patterson of *Lanfax Laboratories* in Armidale (Patterson, 2003). The relevant section relating to critical nitrogen uptake is reproduced below.

"The Environment and Health Protection Guidelines (DLG, 1998) suggest a nominal nitrogen loading of 25 mg/m2/day (91 kg/ha/year) be applied to land application systems. When this loading rate is compared with typical plant and microbial uptake

rates, it is difficult to understand the scientific basis for the guideline value. While the value is called 'nominal' the author has had some authorities impose this as the maximum loading rate. The value is simply the mean of the range of TN for uptake values of perennial pasture referred to by EPA (1995) as 65-130 kg/ha.yr, which references a NSW Agriculture 1991 Feedlot Manual.

The revised Feedlot Manual (NSW Agriculture, 1997) indicates that for an irrigated perennial ryegrass pasture, growing actively March to December, the expected nitrogen uptake rate is 420 kg/ha.yr. Kikuyu is expected to remove 520 kg/ha.yr. Removal of the aerial portion of the grasses is required to remove the nitrogen from the application area. It would follow, although not discussed in the guidelines, that a further quantity of nitrogen would be stored in the root system as organic nitrogen, in the microbial biomass and leaching of nitrogen would be restricted to only a portion of the nitrate-N..."

The critical phosphorus loading rate used in the example on Pages 153 and 154 in the Environment and Health Protection Guidelines (DLG, 1998) is a 'nominal' loading rate of 3 mg/m²/day However, a review of the literature on wastewater chemistry suggests that a more realistic critical loading rate is possibly closer to 7 mg/m²/day. The source publication is a landmark paper on phosphorus in wastewater written by Robert Patterson of *Lanfax Laboratories* in Armidale (Patterson, 2001). The relevant section relating to phosphorus uptake in soils is reproduced below.

"...In all the (analytical) methods, P sorption only accounts for the addition of labile inorganic P being added and measured at specified pH for a particular period. The tests do not account for the pH of the effluent added or the other elemental constituents of the effluent, in particular the proportion of monovalent and divalent cations.

The addition of organic P components will have no immediate impact on determination of P sorption, yet substantial masses of organic P can be stored in the soil without loss by leaching...."

"The purpose of determining P sorption is to predict the capacity of the soil to bind, and reduce the potential for effluent-applied inorganic P leaching from the soil and entering surface or groundwater. The results of this testing program do not support the general discount factor of 70% from measured P sorption to that actually adsorbed. Since part of the P in effluent is in organic form, a soil's capacity to adsorb P is greater than determined for inorganic P sorption...."

The critical phosphorus loading rate adopted in this WMP is 7 mg/m²/day. The formulae documented in the Environment and Health Protection Guidelines follows in their relevant sections with calculations for the Site.

The following calculations are provided for the four-bedroom (960 L/day) hydraulic load scenario. The calculations for the five-bedroom (1,200 L/day) scenario are summarised in **Table 6**.

Larry Cook Consulting

Determination of Minimum Area Based on Nitrogen Loading

$$A = \frac{C \times Q}{L_{n}}$$

$$A = 20 \times 960 / 68$$

$$= 282.4 \text{ m}^{2}$$

where $A = land Area (m^2)$

C = concentration of Total Nitrogen (TN) (17 mg/L) less 20% for lost to soil processes

Q = treated wastewater flow rate (L/day)

 L_n = critical TN loading rate (mg/m²/day) (Whitehead & Associates)

Determination of Area Based on Phosphorus Loading

The determination of the minimum area is based on a phosphorus loading of 10 mg/L. Based on the parameters gleaned from research by Patterson (2001) and used by a leading consultancy in the industry, a phosphorus soil sorption without leaching factor of 0.7, a critical phosphorus uptake rate of 7 mg/m²/day and a recommended phosphorus sorption ability of 50 years is as follows;.

 $A = P_{generated} / (P_{adsorbed} + P_{uptake})$ A = 140.2 / (0.331 + 0.128) $= 305.6 \text{ m}^{2}$

P generated over 50 years = TP x Q x days x years = 8 x 960 x 365 x 50 = 140.2 (2.80 kg/year) where P generated = amount of phosphorus generated (kg) TP = Total Phosphorus concentration in treated wastewater (mg/L)

Q = treated wastewater flow rate (L/day)

P adsorbed = P Sorp x 0.7 = $4,725 \times 0.7$ = 0.331 kg/m^2

where P adsorbed = amount of phosphorus that can be adsorbed without leaching P Sorp = phosphorus sorption capacity (kg/ha)

	P uptake over 50 years	= CPLR x days x years = 7 x 365 days x 50 years = 0.128 kg/m ²
where	P uptake = amount of pho CPLR = critical P loading	osphorus vegetation uptake rate (mg/m²/day)

The results are summarised in **Table 7**.

Table 7 Summary Results of Nutrie	nt Calculations
Parameter	Calculation
Estimated Total Nitrogen Concentration (AWTS)	20 mg/L
Estimated Total Phosphorus Concentration (AWTS)	8 mg/L
Estimated bulk soil density	1500 kg/m ³
Phosphorus sorption depth (from field soil testing)	0.70 m
Phosphorus sorption capacity (laboratory testing)	450 mg P/kg (4,725 kg/ha)
Design wastewater load (4-5 bedrooms town water)	960–1,200 L/day (150 L/person/day)
Design application area	700 - 850 m ²
Total nitrogen not assimilated	0 kg/year
Total phosphorus not assimilated	1.79 – 2.60 kg/year
Site phosphorus longevity	Greater than 50 years

7.7.3 Design Sub-Surface Drip Irrigation

The important design elements of the sub-surface irrigation system are summarised as follows:

- The recommended type of irrigation is pressurised sub-surface drip irrigation which, if designed and installed correctly, ensures even, widespread and efficient application of treated wastewater under controlled application rates within the root-zone of plants and grasses.
- The treated wastewater should be applied evenly across the designated disposal area.
- There are several suitable and available proprietary, pressure-compensating drip irrigation systems which are designed for irrigation of wastewater which contain elevated levels of nutrient and biological loads, BOD and suspended solids. Industry examples include:
 - UniBioline Netafim Australia
 - Safe-T-Flow BUI Ebb & Flow Technologies, Australia
 - > Wasteflow Triangle Filtration & Irrigation, Australia
 - KISS Ground Irrigation system
 - Triangle Irrigation system

These proprietary irrigation systems incorporate root intrusion protection and are designed to significantly reduce the risk of any blockages.

- The irrigation lines should be installed at a depth of between approximately 100 and 150 mm below ground surface, parallel to the ground slope and parallel to each other. The recommended separation distance between lateral pipes in the irrigation panels is less than approximately 1.0 m which will minimise 'striping'.
- Manufacturers recommend the installation of:
 - In-line 120-micron disc filter in order to minimise the amount of solids entering the pipelines and emitters
 - Air release valves (vacuum breaker valves) will be installed at the high points in individual irrigation areas to prevent soil particles being sucked into the lines at the end of pump cycles as pipelines depressurise.
 - Flushing valves are installed at points most distant to the inlet manifold, to enable periodic flushing of lines and provide for effective long term performance

It is recommended that these elements are inspected for integrity and operational status and cleaned as necessary during quarterly contractual inspections and maintenance. Repairs or replacement should be carried out as required.

A design for irrigation is provided in **Figure 7** and an industry example of a subsurface irrigation layout with principle components is presented in **Figure 8**.

7.8 RESERVE APPLICATION AREA

In accordance with Section 6.4.4 of Council's DAF policy, Land application Areas (LAAs) dosed with secondary treated effluent do not require provision of a reserve (backup) LAA if:

- individual land holdings are greater than 4,000 m²;
- there is demonstrated ability to satisfy guideline buffer setback distances; and
- the disposal of treated wastewater is via irrigation or mounds.

The sizes of the proposed allotments in the Site all exceed 4,000 m^2 and there is considered to be no impediment to satisfy the guidelines buffer setback distances. In addition, the preferred and recommended method of disposal of treated wastewater is sub-surface drip irrigation. In this regard, delineation of areas on each allotment for reserve disposal is not required.

7.9 FLOOD HAZARD

The Site is flood affected. The minimum elevation on the Site for the disposal of treated wastewater is understood to be 4.2 m Australian Height Datum (AHD) is annotated in **Figures 3 and 4.** This affects new allotments 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12 and 18. The flood planning level is designated as 6.1 m AHD. However, this WMP has identified sufficient available area on each new allotment for the location of a Land Application Area and satisfactory disposal of treated wastewater above the 1 % AEP level.

7.10 ACID SULPHATE SOIL HAZARD

Acid sulphate soils (ASS) have been identified on the Site from a review by others of the Acid Sulphate Soil Rick maps published by the NSW Department of Environment and heritage. ASS identified on the Site is annotated in **Figure 9** and consists of the following:

- Class 2 ASS mapped on new allotments 4, 5, 6 and 18.
- Class 3 ASS mapped on new allotments 10, 11 and 12.
- Class 4 ASS mapped on new allotments 1, 3, 4, 6 and 18.

In accordance with Section 6.3.10 of the DAF, the potential presence of acid sulphate soils on low-lying coastal and estuarine areas such as the setting for the Site should be evaluated. As the DAF notes, the disturbance of potential acid sulphate soils should be avoided as part of any on-site sewage management system design.

However, this WMP has identified sufficient available area on each new allotment for the location of a Land Application Area and satisfactory disposal of treated wastewater in areas not identified as an ASS hazard.

7.11 CUMULATIVE IMPACT ASSESSMENT

A Cumulative Impact Assessment (CIA) may be required for unsewered High Hazard allotments that result in an increase in building entitlements, such as a subdivision development. However, Section 2.3.4 of Council's DAF waives the need for a CIA where:

- individual land holdings are greater than 4,000 m²; and
- the proposed Land Application Areas (LAAs) ensure LAAs will comply with the guideline buffer setback distances listed in Table 6-10 of the DAF.

The sizes of the proposed allotments in the Site all exceed 4,000 m^2 and there is considered to be no impediment to satisfy the guidelines buffer setback distances. In this regard, a CIA is not required.

Although a CIA is not required for the proposed subdivision, a Pathogen Transport Model was run to estimate the distance that viral pathogens may migrate downslope from a Land Application Area on the allotments given the consistent landform, soils and hydrogeological characteristics of the Site. The model predicts the fate of pathogens in the environment and provides a measure of the performance of the proposed wastewater treatment process and wastewater disposal systems at the site. The resulting setback distances for viral die-off assesses the potential for possible adverse impacts on the environment, in particular impacts on any receiving waters

The foundations of the Pathogen Transport Model were developed by Beavers and Gardner (1993) and described (and refined) by Cromer et. al. (2001). The Pathogen Transport Model applies mainly to wastewater migrating down a hydraulic gradient from a Land Application Area (LAA) in saturated soils. Pathogens can also migrate downslope in overland flow that has intersected the LAA. However, the proposed LAAs are sub-surface irrigation fields where the risk of effluent resurfacing and flowing offsite is negligible.

Cromer (2001) identified four key assumptions used in the modelling assuming secondary treatment of wastewater is used:

- Die-off times for bacteria exceed the die-off times for viruses. That is, bacteria are assumed to die-off within a shorter distance than viruses;
- Viral reduction has been set at a three times the order of magnitude for secondary treated wastewater from the proposed aerated wastewater treatment systems. Disinfection in the proposed treatment systems provides high level of conservatism in the calculations.

- The adopted average soil groundwater temperature is 15°C which is considered plausible for the regional location of the Site. Cromer notes that cooler temperatures allow viruses to reside longer in the soil resulting in potentially greater travel distances. Climate data indicates that the average mean air temperature exceeds 15°C. The implication is that the average groundwater temperatures likely exceed 15°C which provides a further level of conservatism in the modelling.
- A conservative soil porosity of 30% is adopted for silty sandy loam to sandy clay loam topsoils in which wastewater will be disposed.

The first step to predict the horizontal distance travelled in groundwater to achieve total viral die-off is to use Figure 1 in Cromer (2001) to determine days travel time using groundwater temperature and a selected order of magnitude reduction.

The second step is the calculation of the predicted maximum travel distance using Equation 4 in Cromer *et al.* (2001):

$$Dg = (t-dv.P/K)/(P/K.I)$$

Where:

- Dg: Distance travelled in groundwater
- T: Time in days
- dv: Depth to Water Table (Vertical drainage before entering groundwater)
- P: Effective porosity of soil)as a fraction)
- K: Saturated hydraulic conductivity
- I: Groundwater gradient (as a fraction)

The assumptions used for the above parameters in the Pathogen Transport Model for the Site and predicted maximum distance of viral transport (die-off distance) are provided in **Table 8**.

Pathogen Transpo	Table 8: ort Model Ass	umptions and Results
Parameter	Nominated Value	Comments/Assumptions
Soil Porosity (decimal)	0.3 (30%)	Based on typical porosity of silty sandy loam to sandy clay loam soil
Hydraulic Conductivity Ksat (m/day)	1.5	Average for silty sandy loam to sandy clay loam topsoils
Depth to Groundwater (m)	4	Conservatively low to take into consideration possible seasonal perched watertable in clay subsoils (permanent groundwater >11 m)
Groundwater Gradient (%)	20	Conservatively high given maximum ground slopes on Site ~12%. Some allotments less than 12%.
Groundwater Temperature (°C)	15	Conservatively less than mean air temperatures
Adopted Log Reduction of Pathogens	3	Conservatively high given that wastewater is disinfected (chorine)
Required Setback Distance (m)	20.2	Horizontal distance travelled in groundwater to achieve a log 3 reduction in viral numbers

The results of the Pathogen Transport Model predict a Log 3 reduction (total die-off) of pathogens within approximately 20.2 m of the downside perimeter of the Land Application Area (LAA). This distance is taken into account in locating the LAA on each of the new allotments with the exception of New Lot 18 which hosts the existing dwelling.

The existing LAA located close to the existing dwelling in New Allotment 18 is presently receiving primary treated wastewater from a gravity-driven septic tank. Cromer (2001) suggests a five times the order of magnitude for primary treated wastewater. The results of the model for the existing absorption trench system adopting the same parameters and assumptions predicts a Log 5 reduction (total die-off) of pathogens within approximately 35.2 m of the trench system.

7.12 DIVERSION DRAIN

A diversion drain or suitable device must be constructed immediately upslope of the Land Application Areas on sloping allotments to intercept and divert any overland flow or shallow water migrating downslope from upslope areas. A design cross

Page 24

section through an example of a diversion drain with general specifications is provided in **Figure 10**.

7.13 BUFFER DISTANCES

The position of the proposed Land Application Area (LAA) on each new allotment satisfies the following guideline buffer distances listed in **Table 9** and documented in Table 5 of the Environmental Health Protection Guidelines (DLG 1998). There are farm dams on proposed new allotments 11 and 18 but no defined drainages or water wells (bores).

Table 9 Buffer Distances	
From Intermittent Drainages	40 m
From Permanent Drainages	100 m
From Dams	40 m
From Domestic water well (Bore)	250 m
Upgradient of Property Boundary	6 m
Downgradient of Property Boundary	3 m
Upgradient of swimming pools, driveways and buildings	6 m
Downgradient of swimming pools, driveways and buildings	3 m

8. CONCLUSIONS AND RECOMMENDATIONS

- The wastewater management plan is developed to meet the environmental and health *Performance Objectives* documented in the Environmental Health Protection Guidelines (DLG 1998), in particular the avoidance of any impacts on public health or the environment. The design disposal of secondary treated effluent on-site proposes an approved and effective methodology in accordance with the Environmental Health Protection Guidelines (DLG 1998) and AS/NZS 1547:2012 (SAI & NZS 2012).
- The geology, soil characteristics and attributes, landform, available land for onsite application and local climate allow treated wastewater to be disposed on-site via sub-surface drip irrigation.
- A Department of Health approved AWTS (or suitable treatment system) and disposal via sub-surface drip irrigation in an appropriately constructed irrigation system is considered suitable for each of the new allotments.
- The recommended area for the sub-surface irrigation system is approximately 700 to 850 m². This calculated disposal area is predicated on a hydraulic load of 960 to 1,200 L/day respectively.
- The Land Application Areas for each allotment are above the 1% AEP flood level and sufficiently upslope of any potential and actual Acid Sulphate Soil hazards.

- The results of the Pathogen Transport Model for new allotments 1 through 17 predict total die-off of pathogens within approximately 20.2 m of the downside perimeter of the Land Application Area (LAA). The results of the model for the existing absorption trench system in new allotment 18 predicts a total die-off of pathogens within approximately 35.2 m of the trench system.
- Pressure compensated drips and root invasion protection should be used in the sub-surface drip irrigation system. Lilac coloured *UniBioline, Wasteflow, Triangle, Safe-T-Flow* or *KISS* dripper line should be used.
- Nomination of a reserve land application area is not required.
- The proposed location of Land Application Areas are shown in Figure 6. The design specifications of the sub-surface irrigation system are shown in Figure 8. An industry example of a typical sub-surface drip irrigation layout is provided in Figure 9. Construction of any irrigation system should be in general accordance with the principles documented in Section 7.7.3.
- An approved AWTS will require quarterly (3-monthly) contractual inspections which include the examination of the operation of the aerator, pump, disinfection system and alarm system. This is an ongoing cost.
- The construction of the irrigation (disposal) system and associated plumbing and hydraulic connections should be undertaken by a licensed plumber/drainer or suitably licensed practitioner with experience in installing wastewater treatment and on-site disposal systems in accordance with AS/NZS 1547:2012 and any relevant codes of practices.
- The optimal route for the plumbing between the AWTS or similar treatment system and the disposal system can be selected by the licensed plumber or installer to suit the development.
- As required, select an AWTS (or suitable treatment system) and complete an Application to Install Sewage Management System including Greywater Treatment System and Greywater Diversion System Sec 68, Chapter 7 LGA 1993. A Council fee applies.

9. **REFERENCES**

- Cromer W C. 2001. Treating Domestic Wastewater in a Shallow Coastal Aquifer near Hobart, from Patterson & Jones (Eds.) Proceedings of On-site '01 Conference: Advancing On-site Wastewater Systems. Lanfax Laboratories, Armidale, 25-27 September 2001.
- Cromer W C, Gardner E A and Beavers P D. 2001. An Improved Viral Die-off Method for Estimating Setback Distances, from Patterson & Jones (Eds.) Proceedings of Onsite '01 Conference: Advancing On-site Wastewater Systems. Lanfax Laboratories, Armidale, 25-27 September 2001.
- DLG. 1998. Environmental Health Protection Guidelines On Site Sewage Management for Single Households.
- Hazelton, P.A. & Murphy, B.W. eds. (1992). What Do All the Numbers Mean? A Guide for the Interpretation of Soil Test Results. Department of

Infrastructure, Planning and Natural Resources (formerly Department of Conservation and Land Management, Sydney)..

- Matthei, L.E. 1995. Soil Landscapes of the Newcastle 1;100,000 Sheet Report. Department of Land and Water Conservation. Sydney.
- Patterson, R.A. 2001 Phosphorus Sorption for On-site Wastewater Assessments in *Proceedings of On-site '01 Conference: Advancing On-site Wastewater Systems* by R.A. Patterson and M.J. Jones (Eds). Published by Lanfax Laboratories Armidale. Pp 307-314.
- Patterson, R.A. 2003 Nitrogen in Wastewater and its Role in Constraining On-Site Planning in Future Directions for On-site Systems. Best Management Practice. Proceedings of On-site '03 Conference by Patterson, R.A and Jones, M.J (Eds). Held at University of New England, Armidale 30th September 2003. Published by Lanfax Laboratories Armidale. Pp 313-320.
- Port Stephens Council. 2015. On-Site Sewage Development Assessment Framework. DAF V1.4.
- SAI & SNZ. 2012. On-Site Domestic-Wastewater Management. AS/NZS 1547:2012, Australian Standards International & Standards New Zealand.
- Sydney Catchment Authority. 2012. *Designing and Installing On-Site Wastewater Systems* (SCA, 2012).

For and on behalf of Larry Cook Consulting

Lany Cook

Larry Cook Environmental consultant and Hydrogeologist

APPENDIX A

CALCULATIONS SUB-SURFACE IRRIGATION

Four bedrooms

Design Wastewater Flow Design Percolation Rate	S R O	L/day mm/wk	960 21					Lot 10	Lot 100 DP1064980 792 Seaham Road, Seaham	64980	792 S€	aham	Road,	Seahaı	٤	
Parameters	Symbo	Symbol Formula	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Days in Month	D		days	31	28	31	30	31	30	31	31	30	31	30	31	365
Precipitation	Р		mm/month	77.2	92.6	110.6	85.3	102.8	102.4	72.8	60.2	49.7	56.2	82	61.8	1083
Evaporation	Е		mm/month	213.9	173.6	151.9	114	83.7	72	80.6	111.6	141	170.5	189	223.2	1725
Crop Factor	С		ı	0.7	0.7	0.7	0.5	0.5	0.4	0.4	0.5	0.5	0.5	0.7	0.7	
Outputs																
Evapotranspiration	ET	E*C	mm/month	149.73	~	106.33	57	41.85	28.8	32.24	55.8	70.5	85.25	132.3	156.24	1037.56
Percolation	в	(R/7)*D	mm/month	93.0	84.0	93.0	90.0	93.0	0.06	93.0	93.0	90.06	93.0	90.0	93.0	1095.0
Outputs		ET+B	mm/month	242.7	205.5	199.3	147.0	134.9	118.8	125.2	148.8	160.5	178.3	222.3	249.2	2132.6
Inputs																
Precipitation	Р		mm/month	77.2	95.6	110.6	85.3	102.8	102.4	72.8	60.2	49.7	56.2	82	61.8	1083
Retained Precipitation		P*0.75	mm/month	57.9	71.7	83.0	64.0	77.1	76.8	54.6	45.2	37.3	42.2	61.5	46.4	717.45
Possible Effluent Irrigation	W	(ET+B)-P	mm/month	184.8	133.8	116.4	83.0	57.8	42.0	70.6	103.7	123.2	136.1	160.8	202.9	1415.1
Actual Effluent Irrigation	I	H/12	mm/month	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	1415.1
Inputs		P+I	mm/month	175.8	189.6	200.9	181.9	195.0	194.7	172.5	163.1	155.2	160.1	179.4	164.3	2132.6
Storage	S	(P+I)-(ET+B	(P+I)-(ET+B) mm/month	-66.9	-15.9	1.5	34.9	60.2		47.3	14.3	-5.3	-18.2	-42.9	-85.0	
Cumulative Storage	М		mm	-66.9	-15.9	1.5	36.4	96.6	172.5	219.8	234.1	228.8	210.6	167.8	82.8	
Irrigation Area	L	365*Q/H	m ²	247.6												
Storage	>	Largest M	mm	234.1												
		(V*L)/1000	m^3	58.0												

Environment and Health Protection Guidelines Nominated Area Method Water Balance and Wet Weather Storage Calculation

1095.0 717.45 1037.56 1218.0 500.6 2132.6 365 1083 1083 1725 Total 156.2 -160.4 249.2 93.0 -119.7 -160.4 61.8 223 0.7 61.8 -119.7 -160.4 Dec 46.4 42.5 88.9 31 Lot 100 DP1064980 792 Seaham Road, Seaham -119.7 132.3 102.6 90.0 222.3 61.5 41.1Nov 30 82 189 82 0.7 -93.6 -93.6 170.5 85.25 178.3 -93.6 31 56.2 56.2 42.2 93.0 42.5 84.7 Oct 0.5 90.06 160.5 -82.1 -82.1 37.3 70.5 78.4 -82.1 Sep 49.7 41.130 49.7 141 0.5 111.6 148.8 -61.1 -61.1 60.2 60.2 45.2 55.8 93.0 Aug 42.5 -61.1 0.587.7 31 32.24 31 72.8 80.6 93.0 125.2 -28.1 72.8 54.6 -28.1 -28.1 42.5 97.1 0.4Jul 102.4 102.4 118.8 117.9 28.8 90.0 76.8 -0.9 Jun 41.1-0.9 -0.9 0.430 72 102.8 31 102.8 119.6 134.9 41.85 -15.2 42.5 93.0 -15.2 -15.2 May 83.7 77.1 0.5 -41.9 -41.9 -41.9 30 85.3 85.3 64.0 90.06 147.0 Apr 114 41.1105.1 0.5 57 151.9 106.33 110.6 -73.9 110.6 -73.9 199.3 Mar 83.0 42.5 125.5 93.0 -73.9 0.731 121.52 173.6 205.5 28 95.6 95.6 84.0 -95.4 -95.4 -95.4 71.7 110.1 Feb 38.4 0.7 mm/month 149.73 -142.3 -142.3 -142.3 213.9 100.4242.7 93.0 31 77.2 77.2 57.9 42.5 Jan -0.9 -0.6 0.7 (P+W)-(ET+B) mm/month 960 700 21 mm/month mm/month mm/month mm/month mm/month mm/month mm/month mm/month Units days mm mm³ (V*L)/1000 Largest M (R/7)*D Symbol Formula 2nd year (Q*D)/L mm/wk P*0.75 ET+B L/day P+WE*C m^2 ET B ≽ ΣN Ω > С К Г Ь Щ U Ч Possible Effluent Irrigation Design Wastewater Flow **Design Percolation Rate Retained Precipitation** Cumulative Storage Evapotranspiration Days in Month Precipitation Precipitation Evaporation Parameters Crop Factor Percolation Land Area Outputs Outputs Storage Storage Inputs Inputs

Nutrient & Soil Paramaters	amaters									
tod Totol N of										Phosphorus Balance
ileu 101ai - IN CC	Estimated Total - N concentration (mg/L)	ı (mg/L)		20	Hydraul	ic Load and Dis	Hydraulic Load and Disposal Area Parameters	ers		
Effluent Total P Concentration (mg/L)	entration (n	lg/L)		8	Design w	Design wastewater load (L/day)	L/day)		960	
					Design A	Design Application Area (m ²)	(m ²)		700	0.06 + 10000
Effluent Ammo	nia - N con	Effluent Ammonia - N concentration (mg/L) (55% total N)	.) (55% total N)	11	Compute	Computed Parameters				(kg/i
int Organic - N c	soncentratic	Effluent Organic - N concentration (mg/L) (15% total N)	otal N)	.0	Ammonia	Ammonia N Load (kg/year)	ar)		4.80	
Effluent Oxidised - N concentration (mg/L) (30% total N)	concentrati	on (mg/L) (30%	total N)	9	Organic 1	Organic N load (kg/year)			0.11	
Organic N conversion to ammonia (%)	to ammoni	a (%)		90	Oxidised	Oxidised N load (kg/year)			1.89	0.08 + 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
Ammonia loss through volatilisation(%)	h volatilisat	ion(%)		25	Effective	Effective total N load (kg/year)	/year)		6.80	
Oxidised N loss through denitrification (%)	gh denitrifio	cation (%)		10	Phosphor	Phosphorus load (kg/year)			2.80	0.04 + 100 -
Critical Total Nitrogen Loading Rate (mg/m ² /day)	n Loading F	tate (mg/m ² /day)		68	Soil phos	phorus sorption	Soil phosphorus sorption capacity (kg/ha)		4725	
					Results	Results Summary				- 0.00 http://doi.org/10/10/10/10/10/10/10/10/10/10/10/10/10/
Critical Phosphorus Loading Rate (mg/m ² /day)	oading Rate	e (mg/m ² /day)		7	Total nitrogen	itrogen not as	not assimilated (kg/year)	r)	0.00	
Estimated Soil Bulk Density (kg/m ³)	bensity (kg/i	m ³)		1500	Percent	of nitrogen r	Percent of nitrogen not assimilated (%)		0	Phosphorus Balance (ka/month)
Assumed Phosphorus Sorption Depth (m) Lab-determined P-Sorp capacity (mg P/kg soil)	Sorption D. p capacity (epth (m) (mg P/kg soil)		0.70 450	Total p Site pho	Total phosphorus not assimilated Site phosphorus longevity (years)	Total phosphorus not assimilated (kg/year) Site phosphorus longevity (years)	year)	1.79 185	
	Canon de	NEtwoord Lond	Case Mitter and	NT: true ware	Desidence	Dheatheanse	Case Discrete and	Dheedheere	Decitive	
Month Days III Month	Rate Factor (0-	INLUGEN LOAD ALOP INLUGEN (kg/month) Uptake (kg/area/month	Uptake Uptake (kg/area/month)	Balanace (kg/month)	Fostuve Nitrogen Balance	rnospnorus Load (kg/month)	Crop Fnospnorus Uptake (kg/area/month)	Filospilorus Balance (kg/month)	Positive Phosphorus Balance	Nitrogen Balance
	1)				(kg/month)				(kg/month)	
31	0.7	0.58	1.03	-0.46	0.46	0.23	0.11	0.13	0.13	
28	0.7	0.52	0.93	-0.41	0.41	0.23	0.10	0.14	0.14	
31	0.7	0.58	1.03	-0.46	0.46	0.23	0.11	0.13	0.13	
30	0.5	0.56	0.71	-0.16	0.16	0.23	0.07	0.16	0.16	
31	0.5	0.58	0.74	-0.16	0.16	0.23	0.08	0.16	0.16)/B 0.20 +
30	0.4	0.56	0.57	-0.01	0.01	0.23	0.06	0.17	0.17	0.00
31	0.4	0.58	0.59	-0.01	0.01	0.23	0.06	0.17	0.17	
31	0.5	0.58	0.74	-0.16	0.16	0.23	0.08	0.16	0.16	
30	0.5	0.56	0.71	-0.16	0.16	0.23	0.07	0.16	0.16	
31	0.5	0.58	0.74	-0.16	0.16	0.23	0.08	0.16	0.16	-0.60
30	0.7	0.56	1.00	-0.44	0.44	0.23	0.10	0.13	0.13	Nitrogen Balanace (kg/month)
31	0.7	0.58	1.03	-0.46	0.46	0.23	0.11	0.13	0.13	Crop Nitrogen Jotake (ko/area/month)
365	6.8	6.80	9.83	-3.04	3.04	2.80	1.01	1 79	1 79	

APPENDIX B

CALCULATIONS SUB-SURFACE IRRIGATION

Five bedrooms

Design Wastewater Flow Design Percolation Rate	Q R	L/day mm/wk	1,200 21					Lot 10(Lot 100 DP1064980 792 Seaham Road, Seaham	64980	792 S€	aham	Road,	Seahaı	E	
)					4											
Parameters	Symbo	Symbol Formula	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Days in Month	D		days	31	28	31	30	31	30		31	30	31	30	31	365
Precipitation	Р		mm/month	77.2	92.6	110.6	85.3	102.8	102.4		60.2	49.7	56.2	82	61.8	1083
Evaporation	Щ		mm/month	213.9	173.6	151.9	114	83.7	72	80.6	111.6	141	170.5	189	223.2	1725
Crop Factor	C		ı	0.7	0.7	0.7	0.5	0.5	0.4		0.5	0.5	0.5	0.7	0.7	
Outputs																
Evapotranspiration	ET	E*C	mm/month	149.73	121.52	106.33	57	41.85	28.8	32.24	55.8	70.5	85.25	132.3	156.24	1037.56
Percolation	в	(R/7)*D	mm/month	93.0	84.0	93.0	90.0	93.0	90.0	93.0	93.0	0.06	93.0	90.0	93.0	1095.0
Outputs		ET+B	mm/month	242.7		199.3	147.0	134.9	118.8	125.2	148.8	160.5	178.3	222.3	249.2	2132.6
Inputs																
Precipitation	Ь		mm/month	77.2	92.6	110.6	85.3	102.8	102.4	72.8	60.2	49.7	56.2	82	61.8	1083
Retained Precipitation		P*0.75	mm/month	57.9	71.7	83.0	64.0	77.1	76.8	54.6	45.2	37.3	42.2	61.5	46.4	717.45
Possible Effluent Irrigation	W	(ET+B)-P	mm/month	184.8	133.8	116.4	83.0	57.8	42.0	70.6	103.7	123.2	136.1	160.8	202.9	1415.1
Actual Effluent Irrigation	I	H/12	mm/month	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	1415.1
Inputs		P+I	mm/month	175.8	189.6	200.9	181.9	195.0	194.7	172.5	163.1	155.2	160.1	179.4	164.3	2132.6
Ctown and	ŭ		(D+I) (ET+B)	96 0	15.0	ч -	34.0	60.7		5 LV	113	c V	001	0.07	050	
Gumulative Storage	ב מ	- -	mm	6'99-	-15.9	<u>, 1</u>	36.4	96.6	5.071	2.19.8	234.1	2.28.8	210.6 210.6	167.8	8.08	
Irrigation Area	L	365*Q/H	m^2	309.5												
č																
Storage	>	Largest M	mm 3	234.1												
		(V*L)/1000	m	72.5												

Environment and Health Protection Guidelines Nominated Area Method Water Balance and Wet Weather Storage Calculation

1095.0 1037.56 717.45 1232.7 2132.6 515.3 365 1083 1083 1725 Total 156.2 93.0 249.2 61.8 223 0.7 61.8 -118.4 -159.1 -159.1 Dec 46.4 43.8 -118.4 -159.1 90.1 31 Lot 100 DP1064980 792 Seaham Road, Seaham 132.3 -118.4103.9 90.0 222.3 61.5 42.4 Nov 30 82 189 82 0.7 170.5 85.25 178.3 -92.3 -92.3 -92.3 31 56.2 56.2 42.2 93.0 43.8 85.9 Oct 0.5 160.5 -80.9 -80.9 90.06 -80.9 37.3 79.6 70.5 42.4 Sep 49.7 30 49.7 141 0.5 111.6 -59.9 148.8 -59.9 -59.9 60.2 60.2 45.2 55.8 93.0 Aug 43.8 88.9 0.5 31 -26.9 32.24 -26.5 -26.5 31 72.8 80.6 72.8 93.0 125.2 54.6 43.8 98.4 0.4Jul 102.4 102.4 118.8 119.2 28.8 90.0 76.8 42.4 Jun 0.40.4 0.4 0.4 30 72 102.8 31 102.8 134.9 120.9 41.85 -14.0 -14.0 -14.0 43.8 93.0 May 83.7 77.1 0.5 -40.7 -40.7 30 85.3 85.3 64.0 106.3 90.06 147.0 -40.7 42.4 Apr 114 0.5 57 106.33 110.6 151.9 -72.6 -72.6 110.6 199.3 Mar 83.0 43.8 126.7 93.0 -72.6 0.731 121.52 173.6 205.5 28 95.6 95.6 111.2 84.0 -94.3 -94.3 -94.3 39.5 71.7 Feb 0.7 mm/month 149.73 -141.1 -141.1 213.9 101.7 -141.1 93.0 242.7 31 77.2 77.2 57.9 43.8 Jan 0.7 (P+W)-(ET+B) mm/month 1,200850 21 mm/month mm/month mm/month mm/month mm/month mm/month mm/month mm/month Units days mm (R/7)*D Symbol Formula 2nd year (Q*D)/L mm/wk P*0.75 ET+B L/day P+WE*C m^2 ET B ≽ ΣN Ω С К Г Ь Щ U Ч Possible Effluent Irrigation Design Wastewater Flow **Design Percolation Rate Retained Precipitation** Cumulative Storage Evapotranspiration Days in Month Precipitation Precipitation Evaporation Parameters Crop Factor Percolation Land Area Outputs Outputs Storage Inputs Inputs

0.4 0.3

mm³

Largest M (V*L)/1000

>

Storage

Nutrient & Soil Paramaters	maters									Phosphorus Balance
otal - N co	Estimated Total - N concentration (mg/L)	ו (mg/L)		20	Hydraul	ic Load and Dis	Hydraulic Load and Disposal Area Parameters	ters		
al P Conc	Effluent Total P Concentration (mg/L)	ıg/L)		8	Design w	Design wastewater load (L/day)	L/day)		1,200	00
					Design A	Design Application Area (m ²)	(m ²)		625	m 0.25 + m m m
ent Ammo	nia - N con	Effluent Ammonia - N concentration (mg/L) (55% total N)	L) (55% total N)	11	Comput	Computed Parameters				
ganic - N c	concentratio	Effluent Organic - N concentration (mg/L) (15% total N)	total N)	ŝ	Ammoni	Ammonia N Load (kg/year)	ar)		6.00	
idised - N	concentrativ	Effluent Oxidised - N concentration (mg/L) (30% total N)	total N)	9	Organic	Organic N load (kg/year)			0.13	alar 0.15 +
conversion	Organic N conversion to ammonia (%)	a (%)		06	Oxidised	Oxidised N load (kg/year)	~		2.37	
oss through	Ammonia loss through volatilisation(%)	ion(%)		25	Effective	Effective total N load (kg/year)	/year)		8.50	
loss throu	Oxidised N loss through denitrification (%)	ation (%)		10	Phospho	Phosphorus load (kg/year)			3.50	ent 0.05 +
tal Nitrogen	n Loading R	Critical Total Nitrogen Loading Rate $(mg/m^2/day)$		68	Soil phos	phorus sorption	Soil phosphorus sorption capacity (kg/ha)		4725	
					Results	Results Summary				- 0.00 Heterterterterterterterterterterterterter
osphorus L	oading Rate	Critical Phosphorus Loading Rate (mg/m ² /day)		7	Total n	Total nitrogen not as	not assimilated (kg/year)	ur)	0.00	-
Soil Bulk E	Estimated Soil Bulk Density (kg/m ³ ,	n ³)		1500	Percent	of nitrogen r	Percent of nitrogen not assimilated (%)	()	0	Phosphorus Balance (kg/month)
hosphorus	Assumed Phosphorus Sorption Depth (m)	Assumed Phosphorus Sorption Depth (m)		0.70	Total p	Total phosphorus no	Total phosphorus not assimilated (kg/year)	year)	2.60	← Crop Phosphorus Uptake (kg/area/month)
Inc- I maiiiii	h raparity (IIIS E/ VS SOIL)		400	Ind Alte	din en minden	centry (years)		+11	
Days in Month	Growth Rate Factor (0- 1)	Nitrogen Load Crop Nitrogen (kg/month) Uptake (kg/area/month	Crop Nitrogen Uptake (kg/area/month)	Nitrogen Balanace (kg/month)	Positive Nitrogen Balance (kg/month)	Phosphorus Load (kg/month)	Crop Phosphorus Uptake (kg/area/month)	Phosphorus Balance (kg/month)	Positive Phosphorus Balance (kg/month)	Nitrogen Balance
31	7.0	0 77	0 07	-0.20	0.20	0.79	60 U	0.00	0.20	
28	0.7	0.65	0.83	-0.18	0.18	0.29	0.09	0.21	0.21	
31	0.7	0.72	0.92	-0.20	0.20	0.29	0.09	0.20	0.20	
30	0.5	0.70	0.64	0.06	0.06	0.29	0.07	0.23	0.23	0.40 +
31	0.5	0.72	0.66	0.06	0.06	0.29	0.07	0.22	0.22	0.20 +
30	0.4	0.70	0.51	0.19	0.19	0.29	0.05	0.24	0.24	
31	0.4	0.72	0.53	0.19	0.19	0.29	0.05	0.24	0.24	0.00
31	0.5	0.72	0.66	0.06	0.06	0.29	0.07	0.22	0.22	
30	0.5	0.70	0.64	0.06	0.06	0.29	0.07	0.23	0.23	
31	0.5	0.72	0.66	0.06	0.06	0.29	0.07	0.22	0.22	-0.40
30	0.7	0.70	0.89	-0.19	0.19	0.29	60.0	0.20	0.20	Nitrogen Balanace (kg/month)
31	0.7	0.72	0.92	-0.20	0.20	0.29	0.09	0.20	0.20	
365	6.8	8 50	8.78	-0.28	1.67	3.50	06.0	2 60	7 60	

APPENDIX C SOIL BORE LOGS

										Job No: 18047	
				1	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 1	
				-		' y				Sheet 1 of 1	
LC)G	0	FΤ	ES	ЪТ	Η	OLE				
Clie							B. Statham			ocation: Ref. Figure 1	
	ject		1' -				Wastewater Management Investigations		Methoo dinates	d: Drilling Rig	
Pro	Jeci	LO	catio	on:			Lot100 DP1064980 792 Seaham Road		Grid)	Easting: 0379372 Northing: 6381345	
							Seaham Road	•	ed by:		12
-						~	Seanan	LUYY	eu by.	Date. Feb 20	12
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
Ν							0.00m - 0.40m Dark Brown Silty Sandy Loam.	D	L	TOPSOIL	
1	5	-					Common organics. Dry and loose.				
L	В	Т				Υ	0.40m - 1.40m Silty Clay Loam to Light Clay. Yellow - brown to khaki motted orange-red streaky.				
			0.5		ľ		Medium dense and dry.	D	MD/	COLLUVIAL\RESIDUAL	0.5
			0.5				>0.70m Brick red/brown and slight grit. Stiff and		D	COLLOVIAL (ILLOIDOAL	0.5
	в	т					plastic.				
	_										
							1.40m - Silty Residual 'C' horizon. Pale brown to				
			1.0				yellow. Crumbly weathered. Dry and dense.				1.0
						/					
						V	SBH 1 terminated at 1.40 m depth.				
					/				\backslash		
					/						
			1.5								1.5
			2.0								2.0
				1							
			2.5	4							2.5
			3.0	1							3.0
				1							
				1							
			3.5								3.5
	lanat siste		Votes	8:			Density Index Samples		Moistu	ro	
vs			/ Soft	t			VL Very Loose B Bulk Sample		D Dry		
s		Soft					L Loose D Disturbed Sample		M Mo		
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We		
St VSt		Stiff	/ Stiff				D Dense (50mm diam.) VD Very Dense N S.P.T. Value		-	astic Limit Juid Limit	
H		Hard							··· Liq		
B											

										Job No: 18047	
				L	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 2	
						,	3 ,			Sheet 1 of 1	
LC)G	0	FΤ	ES	ЗT	Н	OLE				
	ent:						B. Statham	Test	Bore L	ocation: Ref. Figure 1	
Pro	ject						Wastewater Management Investigations			d: Drilling Rig	
Pro	oject	Lo	catio	on:			Lot100 DP1064980		dinates	Easting: 0379306	
							792 Seaham Road		A Grid)	Northing: 6381287	
				1	1	1	Seaham	Logg	ed by:	LLC Date: Feb 201	2
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density		Depth (m)
Ν							0.00m - 0.25m Silty Sandy Loam. Dark brown to	D	L	TOPSOIL	
Т							grey brown with grit. Rocks to 12mm, including				
L	В	Т			-	-	quartz.		<u> </u>		_
			0.5				0.25m - 0.60m Sandy loam. Some silt. Grey brown. Moist and loose. Quartz sand and sub	М	L	COLLUVIAL	0.5
			0.5				angular rocks to 15mm grading to off white course	1		COLLUVIAL/RESIDUAL	0.5
	в	т			\vdash	K	quartz sand and rocks at depth.		MD		
	_						0.60m - 1.40m Clay Loam to Light / Medium	D			
							Clay. Yellow-brown to khaki mottled orange - red.				
			1.0				Medium dense to dry, plastic, in part gritty.				1.0
						\vee	1.40m - 1.80m Sandy Clay. Blue grey. Weathered sedimentary rock.	D			
						1 /	sedimentary lock.		\frown		
			1.5		ľ	/		$\left \right\rangle$	MD	RESIDUAL	1.5
			-			1	SBH 2 terminated at 1.80 m depth.				
					/				\backslash		
					/						
			2.0								2.0
								·			
			2.5								2.5
				-				1			
				1		1					
								1			
			3.0	1		1					3.0
]		1					
								1			
				-				1			
			3.5								2.5
Exp	lanat	orv I	3.5 Notes	5:		I		1	l		3.5
Con	siste	ncy					Density Index Samples		Moistu		
VS S			/ Soft	t			VL Very Loose B Bulk Sample L Loose D Disturbed Sample		D Dr	-	
S F		Soft Firm					L Loose D Disturbed Sample MD Medium Dense U50 Undisturbed Sample		W We		
St		Stiff					D Dense (50mm diam.)			astic Limit	
VSt			/ Stiff				VD Very Dense N S.P.T. Value		WI Liq	uid Limit	
Η		Hard	a								

										Job No: 18047	
				1:	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 3	
				-		. y				Sheet 1 of 1	
LC	C	0	FΤ	ΈS	ЪТ	Н	OLE				
	ent:						B. Statham			ocation: Ref. Figure 1	
	oject						Wastewater Management Investigations			d: Drilling Rig	
Pro	oject	Lo	catio	n:			Lot100 DP1064980		dinates	Easting: 0379472	
							792 Seaham Road		Grid)	Northing: 6381318	10
	1			1	1	r	Seaham	Logge	ed by:	LLC Date: Feb 20 ⁴	12
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
N I					/		0.00m - 0.15m Silty Sandy Loam . Dark brown to grey brown,	D	L	TOPSOIL	
L	в	т			\setminus		0.15m - 0.20m Sandy Loam. Grey to pale brown.		Ļ/	COLLUVIAL	
				2	\setminus		Common rounded laterite fragments to 35mm atop	D	\vee	COLLUVIAL/RESIDUAL	
			0.5			Ν	the clay, 'old' surface on clay and ironstone.		1		0.5
				53				\boldsymbol{V}			
	В	Т					0.20m - 0.70m Clay Loam to Light Medium Clay.	D	MD	25012111	
				53	\setminus		Yellow - brown to khaki motted orange tending to			RESIDUAL	
				33		$\left \right\rangle$	red - brown. Gritty at 0.60m	D	MD		
			1.0	222	/		0.70 - 1.00 Grey to pale brown - beige. Sandy weathered rock.		IVID		1.0
							weathered rock.				
							SBH 3 terminated at 1.0 m depth.				
			1.5								1.5
			2.0								2.0
								•			
			2.5								2.5
1											
1											
1											
1											
1			3.0								3.0
1											$\left - \right $
1											$\left - \right $
1				1				1			
			3.5	1							3.5
			Notes	:							
Cor VS	nsiste		, C.4				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dr		
vs s		Very Soft	/ Soft				L Loose D Disturbed Sample		M Mo		
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We		
St		Stiff					D Dense (50mm diam.)		•	astic Limit	
VSt H		Very Hare	/ Stiff d				VD Very Dense N S.P.T. Value		WI Liq	uid Limit	

										Job No: 18047	
				1	ər	r	Cook Consulting Pty Ltd			Hole No: SBH 4	
					ai	' y	COOK Consulting I ty Ltu			Sheet 1 of 1	
LC)G	0	FΤ	ΈS	т	Н	OLE				
Clie	ent:						B. Statham	Test I	Bore L	ocation: Ref. Figure 1	
	ojec						Wastewater Management Investigations			d: Drilling Rig	
Pro	ojec	t Lo	catio	n:			Lot100 DP1064980		dinates	Easting: 0379532	
							792 Seaham Road		A Grid)	Northing: 6381388	
							Seaham	Logge	ed by:	LLC Date: Feb 20	12
r – z Groundwater	o 🛛 Samples/	H H Field Tests	CEDEDTH (m)	Graphic Log	Unified		Description 0.00m - 0.10m Silty Sandy Loam. Brown to dark brown. Dry and loose. Organisc. Minor rounded fragments of weathered siltstone. 0.10m - 0.30m Silty Sandy Loam. Mid brown to yellow grey brown. Moist, loose, common organics. Gritty (fragments up to 2mm). Rounded rocks to 40mm	Moisture	Consistency Rel. Density	Additional Comments TOPSOIL COLLUVIAL COLLUVIAL/RESIDUAL	Depth (m)
	В	Т	1.0				40mm 0.30m - 0.80m Clay Loam. Yellow brown, khaki clay loam to light/medium clay mottled - orange-red. grading to red-brown gritty silty sandy clay at depth. Grit to 3mm. 0.80m - 1.50m Weathered Sandstone/ Siltstone. Grey to off white (pale brown). Strongly weathered.	D	MD MD	RESIDUAL	1.0
			2.0 2.5 3.0 3.5 Notes				SBH 4 terminated at 1.5 m depth.				1.5 2.0 2.5 3.0 3.5
•	isiste	Very Soft Firm Stiff	y Soft : n y Stiff	:			Density IndexSamplesVLVery LooseBBulk SampleLLooseDDisturbed SampleMDMedium DenseU50Undisturbed SampleDDense(50mm diam.)VDVery DenseNS.P.T. Value			y ist	

Larry Cook Consulting Pty Ltd Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 LOG OF TEST HOLE Client: B. Statham Test Bore Location: Ref. Figure Project: Wastewater Management Investigations Test Method: Drilling Rig Project Location: Lot100 DP1064980 Coordinates Easting: 03795 792 Seaham Road Coordinates Easting: 03795 Staph Pigit Uit Had Description an store of test Bore Location: Ref. Figure Visual Visual Seaham Description an store of test Bore Location: Ref. Figure Visual Visual Seaham Description an store of test Bore Location: Ref. Figure Visual Visual Seaham Description an store of test Bore Location: Ref. Figure Visual Visual Seaham Description an store of test Bore Location: Ref. Figure N Visual Ref. Store of test Bore Location: Ref. Figure Additional Comme Northing: Base of test Bore Location: O.00m - 0.10m Silty Sandy Loam. Mid brown to brown to grow of test Bore of test Bore Location: D L N Distribution of test Bore Location: Distribution of test Bore Location: D L COLLUVIAL									Job No: 18047	
Loca of TEST HOLE Control to the status of th	1			La	rr	Cook Consulting Ptv Ltd			Hole No: SBH 5	
Client: B. Statham Test Bore Location: Ref. Figure Project: Wastewater Management Investigations Test Method: Drilling Rig Project Location: Lot100 DP1064980 Coordinates Easting:103795 792 Seaham Road Coordinates Easting:103795 Seaham Dascription gr g	-				••••				Sheet 1 of 1	
Project: Wastewater Management Investigations Test Method: Drilling Rig Project Location: Lot100 DP1064980 Coordinates Easting: [03795 729 Seaham Coordinates Easting: [03795 Coordinates Easting: [03795 1 Seaham Description Image: Stress of the seaham Additional Comme 1 Image: Stress of the seaham Description Image: Stress of the seaham Additional Comme 1 Image: Stress of the seaham Description Image: Stress of the seaham Additional Comme N Image: Stress of the seaham Image: Stress of the seaham Image: Stress of the seaham Additional Comme N Image: Stress of the seaham Additional Comme N Image: Stress of the seaham Image: Stress of the seaha	OF TE	FT	TE	S	ΓН	OLE				
Project Location: Lot100 DP1064980 792 Seaham Road Seaham Coordinates (MGA Grid) Easting: 03792 (MGA Grid) 1 Seaham Logged by: LUC Date: F 1 0 0 0 Description 0 0 Additional Comme 1 0 0 0 0 0 0 Description 0 0 0 Description 0 0 Description 0 0 Description 0 0 Description Des									<u> </u>	
792 Seaham Road Seaham (MGA Grid) Northing: 63814 Logged by: LLC age of big of big <thof big of big of big <t< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thof 										
Seaham Logged by: LLC Date: F and and and and and and and <td>Location:</td> <td>catio</td> <td>ation</td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Location:	catio	ation	:						
1 1										
N I 0.00m - 0.10m Silty Sandy Loam. Mid brown to brown. Loose and dry, Common organics. D L TOPSOIL B T 0.10m - 0.60m Silty Sandy Loam. Brown to grey brown. Dry and loose. Common organics. Gritty inpart (fragments to 2mm). Noticeably silty and moist (rain). D L COLLUVIAL B T 0.60m - 0.90m Silty Clay Loam to light /Medium Clay. Red brown silty. Sub angular rock fragments to 3mm. D MD COLLUVIAL/RESIDU 1.0 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 2.0 2.0 2.5 SBH 5 terminated at 1.0 m depth. I I						Seaham	Logg	ed by:	LLC Date: Feb 20)12
N I 0.00m - 0.10m Silty Sandy Loam. Mid brown to brown. Loose and dry, Common organics. D L TOPSOIL B T 0.10m - 0.60m Silty Sandy Loam. Brown to grey brown. Dry and loose. Common organics. Gritty inpart (fragments to 2mm). Noticeably silty and moist (rain). D L COLLUVIAL B T 0.60m - 0.90m Silty Clay Loam to light /Medium Clay. Red brown silty. Sub angular rock fragments to 3mm. D MD COLLUVIAL/RESIDU 1.0 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 2.0 2.0 2.5 SBH 5 terminated at 1.0 m depth. I I	Field Tests Depth (m) Granhic Lod	Jepth (m)	Depth (m)	Jraphic Log	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
I B T brown. Loose and dry, Common organics. D L COLLUVIAL B T 0.10m - 0.60m Silty Sandy Loam. Brown to grey brown. Dry and loose. Common organics. Gritty inpart (fragments to 2mm). Noticeably silty and moist (rain). D L L B T 0.60m - 0.90m Silty Clay Loam to light /Medium Clay. Red brown silty. Sub angular rock fragments to 3mm. D MD COLLUVIAL/RESIDU 10 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 115 SBH 5 terminated at 1.0 m depth. I I I I 20 20 I I I I I						0.00m - 0.10m Silty Sandy Loam. Mid brown to				
L B T 0.10m - 0.60m Silty Sandy Loam. Brown to grey brown. Dry and loose. Common organics. Gritty inpart (fragments to 2mm). Noticeably silty and moist (rain). D L B T 0.60m - 0.90m Silty Clay Loam to light /Medium Clay. Red brown silty. Sub angular rock fragments to 3mm. D MD COLLUVIAL/RESIDU 1.0 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 1.5 SBH 5 terminated at 1.0 m depth. I I I I I 2.0 I I I I I I I I 2.1 I I I I I I I I I 1.0 I				· /	\checkmark					
B T 0.5 brown. Dry and loose. Common organics. Gritty inpart (fragments to 2mm). Noticeably silty and moist (rain). D MD COLLUVIAL/RESIDU B T 0.60m • 0.90m Silty Clay Loam to light /Medium Clay. Red brown silty. Sub angular rock fragments to 3mm. D MD COLLUVIAL/RESIDU 1.0 0.90m • 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 1.5 SBH 5 terminated at 1.0 m depth. Image: Silt of the sandstone in th	т						D	L		
B T 0.60m - 0.90m Silty Clay Loam to light /Medium Clay. Red brown silty. Sub angular rock fragments to 3mm. D MD COLLUVIAL/RESIDU 1.0 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 1.5 SBH 5 terminated at 1.0 m depth. Image: Column strongly set in the strong set i										
B T 0.60m - 0.90m Silty Clay Loam to light /Medium Clay. Red brown silty. Sub angular rock fragments to 3mm. D MD COLLUVIAL/RESIDU 1.0 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 1.5 SBH 5 terminated at 1.0 m depth. Image: Coll of the second seco	0.5	0.5	0.5							0.5
Clay. Red brown silty. Sub angular rock fragments to 3mm. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.5						moist (rain).				
1.0 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 1.5 SBH 5 terminated at 1.0 m depth. Image: Sint strongly	Т			8		0.60m - 0.90m Silty Clay Loam to light /Medium	D	MD	COLLUVIAL/RESIDUAL	
1.0 0.90m - 1.00m Weathered Siltstone. Grey to beige to pale brown strongly weathered siltstone / fine sandstone. D MD RESIDUAL 1.5 SBH 5 terminated at 1.0 m depth. Image: Model of the sandstone is the sandstone. D MD RESIDUAL 1.5 Image: Model of the sandstone is the						Clay. Red brown silty. Sub angular rock fragments				
1.5 SBH 5 terminated at 1.0 m depth.						to 3mm.				
1.5 SBH 5 terminated at 1.0 m depth. 2.0 2.0 2.5 .	1.0	1.0	1.0				D	MD	RESIDUAL	1.0
1.5 SBH 5 terminated at 1.0 m depth. 1.5 2.0 2.0 1.0 2.1 1.0 2.1 1.0 1.5 1.0										
						fine sandstone.				
						SBH 5 terminated at 1.0 m depth.				
	1.5	1.5	1.5							1.5
			_							
	2.0	2.0	2.0							2.0
							·			
	25	25	2.5							2.5
							1			
							1			
							1			
	3.0	3.0	3.0							3.0
							1			
3.5										3.5
Explanatory Notes: Consistency Density Index Samples Moisture VS Very Soft VL Very Loose B Bulk Sample D Dry S Soft L Loose D Disturbed Sample M Moist F Firm MD Medium Dense U50 Undisturbed Sample W Wet St Stiff D Dense (50mm diam.) Wp Plastic Limit VSt Very Stiff VD Very Dense N S.P.T. Value WI Liquid Limit H Hard Hard Hard KI Key Stiff	ncy Very Soft Soft Firm Stiff Very Stiff	ry Soft t n f y Stiff	Soft			VL Very Loose B Bulk Sample L Loose D Disturbed Sample MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.)		D Dry M Mo W We Wp Pla	y iist et astic Limit	

										Job No: 18047	
				1	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 6	
				_		. y				Sheet 1 of 1	
LC	CG	0	FΤ	ΈS	т	Н	OLE				
Clie	ent:						B. Statham	Test	Bore L	ocation: Ref. Figure 1	
-	oject						Wastewater Management Investigations			d: Drilling Rig	
Pro	oject	: Lo	catio	on:			Lot100 DP1064980		linates	Easting: 037946	
							792 Seaham Road	· ·	Grid) ed by:	Northing: 638142	
				1		~	Seaham	Logge		LLC Date: Fel	0 2012
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comme	Depth (m)
Ν			-		<		0.00m - 0.08m Silty Sandy Loam. Brown. Dry and	D	L	TOPSOIL	
	n.	т			$\langle \rangle$	/	loose. Common organics.		ΓĽ/		
L	В	Т					0.08m - 0.14m Silty Sandy Loam. Grey brown to pale brown. Dry and loose. Common organics and	D		COLLUVIAL/RESIDU	
			0.5				rounded cobbles to 60mm atop clay.		MD		0.5
			0.0			\setminus					0.0
	в	Т					0.14m - 0.80m Clay Loam to Light/Medium clay.	D			
				22			Red brown. Gritty, motted yellow khaki.				
							0.80 - 1.0 Strongly Weathered Siltstone. Grey to	D	MD	RESIDUAL	
			1.0				beige to pale brown.				1.0
				-			SBH 6 terminated at 1.0 m depth.				
			1.5								1.5
			2.0								2.0
			2.0								2.0
			2.5								2.5
1								·			
1											
			3.0								3.0
			-								
			3.5								3.5
Exp	lanat	ory l	Votes	5:		L			1	1	2.0
-	nsiste						Density Index Samples VL Very Loose B Bulk Sample		Moistu		
VS S		Soft	/ Soft				VL Very Loose B Bulk Sample L Loose D Disturbed Sample		D Dr M Mo		
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We	et	
St		Stiff					D Dense (50mm diam.)			astic Limit	
VSt H		Very	/ Stiff d				VD Very Dense N S.P.T. Value		VVI LIQ	uid Limit	

										Job No: Hole No:	18047 SBH 7	
				La	ar	ry	Cook Consulting Pty Ltd			Sheet 1	of 1	
	\sim	~			`T						0	
		0		ES			OLE	Teet	Daval	anation. Daf	Figure 4	
-	ent: bject						B. Statham Wastewater Management Investigations			ocation: Ref. d: Drilling Ri		
			catio	on:			Lot100 DP1064980		linates		0379426	
							792 Seaham Road	`	Grid)	Northing:	6381505	
			_				Seaham	Logge	ed by:	LLC	Date: Feb 201	2
Groundwater	Samples/	Field Tests	Jepth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional	I Comments	Depth (m)
N	07	-				Ŭ	0.00m - 0.10m Silty Sandy Loam. Brown Dry and	D	L	COLLUVIAL	/TOPSOIL	
Т					//	/	loose. Common organics, gritty.	\frown	T	COLLUVIAL		
L	В	Т					0.10m - 0.15m Silty Sandy Loam. Grey to pale	D		COLLUVIAL	/RESIDUAL	
			0.5				brown. Rounded rock fragments to 5mm. 0.15m - 0.60m Silty Clay Loam to Light/Medium	D	MD			0.5
			0.0				Clay . Red brown Gritty. Mottled khaki-yellow.	2	1112			0.0
	В	Т		82	/	/				RESIDUAL		
				5			0.60 m- 1.10m Clay. Grey to pale brown, mottled	D	MD			
			1.0				yellow-orange grading down into weathered RX at 1.10m - 1.60m					1.0
			1.0	8			1.10m - 1.60m Weathered Siltstone.	/				1.0
						/		D	MD	RESIDUAL		
				8		/	SBH 7 terminated at 1.60 m depth.					
				88	/							
			1.5	8	/				\backslash			1.5
				868								
			2.0									2.0
			-									
			-	-								
			2.5									2.5
				-								
			3.0									3.0
				-								
1												
1			3.5									3.5
			Votes	:								
Cor VS	nsiste		/ Soft				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dr			
S F		Soft					L Loose D Disturbed Sample		M Mo	ist		
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We			
St VSt		Stiff Very	/ Stiff				D Dense (50mm diam.) VD Very Dense N S.P.T. Value			astic Limit uid Limit		
H		Har					• •					

										Job No: 18047	
					ə r	r	Cook Consulting Pty Ltd			Hole No: SBH 8	
				L	ai	' y	COOK COnsulting Fly Llu			Sheet 1 of 1	
LC)G	0	FΤ	ES	т	Н	OLE				
	ent:						B. Statham	Test	Bore L	ocation: Ref. Figure 1	
	ject	:					Wastewater Management Investigations			d: Drilling Rig	
			catio	n:			Lot100 DP1064980		linates	Easting: 0379474	
							792 Seaham Road	(MGA	(Grid	Northing: 6381598	
							Seaham	Logge	ed by:		2
L						c				•	
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
Ν							0.00m - 0.10m Silty Sandy Loam. Brown to grey	D	L	COLLUVIAL/TOPSOIL	
Т							brown. Common organics. Dry and loose. Pebbles,			COLLUVIAL	
L	В	Т				\land	rocks and rounded quartz present.		1		
							0.10m - 0.70m Clay. Red-brown with yellow-khaki	D	L		
			0.5				mottles, gritty.				0.5
						\checkmark	0.70m - 1.00m Light to Medium Clay. Grey to	\frown			
	В	Т			\checkmark	1	mottled yellow-khaki. Gritty.	D	\frown		
						/	1.00m - 2.00m Weathered Siltstone. Grey to pale	\searrow	MD	COLLUVIAL/RESIDUAL	
						ľ	brown. Rocks present.	D			
			1.0		\langle		2.00m - 2.50m Weathered Sitstone. Grey to pale	Ν	$\left \right\rangle$		1.0
						/	brown.Harder but still weathered.	$\left \right\rangle$	MD	RESIDUAL	
								$\backslash $			
				<u>88</u>				\ D\			
						V /	SBH 8 terminated at 2.50 m depth.	$ \setminus \rangle$			
			1.5					$ \rangle$			1.5
						/			\setminus		
					/	/		$ \rangle$	$ \rangle$		
								\			
					/ /				λ ΜΦ		
			2.0		/ /				$ \rangle \rangle$		2.0
									$ \rangle$	RESIDUAL	
									$ \rangle$		
					/						
									$ \rangle$		
			2.5						\		2.5
			3.0								3.0
			3.5								3.5
Exp	lanat	orv N	Votes	:		I		1	I	I	5.5
	siste						Density Index Samples		Moistu	re	
vs			/ Soft				VL Very Loose B Bulk Sample		D Dry		
S -		Soft					L Loose D Disturbed Sample		M Mo		
F St		Firm					MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.)		W We		
St VSt		Stiff	/ Stiff				D Dense (50mm diam.) VD Very Dense N S.P.T. Value			astic Limit uid Limit	
H		Hard							··· Liq		

										Job No:	18047	
				Li	ar	rv	Cook Consulting Pty Ltd			Hole No:	SBH 9	
				_		• •				Sheet 1	of 1	
LC	C	0	FΤ	ΈS	т	Н	OLE					
	ent:						B. Statham			ocation: Ref		
	oject						Wastewater Management Investigations			d: Drilling Ri		
Pro	oject	Lo	catio	n:			Lot100 DP1064980		dinates		0379543	
							792 Seaham Road	`	Grid)	Northing:		10
			r			-	Seaham	Logge	ed by:		Date: Feb 20	12
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional	Comments	Depth (m)
Ν							0.00m - 0.10m Silty Sandy Loam. Brown topsoil.	D	L	COLLUVIAL/	TOPSOIL	
Т					\geq		Loose and dry organics. Pebbles to 30mm.			COLLUVIAL		
L	В	Т		33	\setminus				V	COLLUVIAL/	RESIDUAL	
							0.10m - 0.17m Silty Sandy Loam. Grey to grey	D	Y			
			0.5	23		\setminus	pale brown Dry and loose, common organics. Gritty		MD			0.5
	_	-					with pebbles.	Υ _¬		RESIDUAL		
	В	Т		2	\setminus		0.17m - 0.60m Clay Loam to Light/Medium Clay. Khaki to yellow-brown motted orange. Clay gritty to	D		RESIDUAL		
							8mm. Rare pebbles to 30mm.		MD			
			1.0	ž			0.60m - 0.90m Clay. Red-brown with gritty khaki-	D		RESIDUAL		1.0
				22		$\overline{\ }$	yellow mottles.		MD			
							0.90m - 1.10m Weathered Siltstone. Grey to pale	D				
							brown weathered siltstone.		ĺ			
								1				
			1.5				SBH 9 terminated at 1.10 m depth.					1.5
			2.0									2.0
			2.0									2.0
1			2.5									2.5
1												
1												
1												
1			3.0									2.0
			3.0									3.0
1												
1												
			3.5									3.5
	lanat Isiste	ncy	Votes				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dr			
s		Soft					L Loose D Disturbed Sample		M Mo	ist		
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We			
St VSt		Stiff	/ Stiff				D Dense (50mm diam.) VD Very Dense N S.P.T. Value			astic Limit uid Limit		
H		Har							Liq			

										Job No: 18047	
				1	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 10	
				_	u	' y	ooon oonsaning r ty Eta			Sheet 1 of 1	
LC)G	0	FΤ	ΈS	т	Н	OLE				
Clie							B. Statham			ocation: Ref. Figure 1	
	ject						Wastewater Management Investigations			d: Drilling Rig	
Pro	ject	Lo	catic	n:			Lot100 DP1064980		dinates	Easting: 0379577	
							792 Seaham Road		A Grid)	Northing: 6381643	10
						-	Seaham	Logg	ed by:	LLC Date: Feb 20	012
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
Ν							0.00m - 0.10m Silty Sandy Loam. Dark brown to	D	L	COLLUVIAL/TOPSOIL	
Т							brown topsoil. Dry and loose. Common organics.			COLLUVIAL/RESIDUAL	
L	В	Т					Gritty.		MD		
							0.10m - 0.70m Silty Clay Loam to Light/Medium	D			
			0.5				Clay. Brown to red-brown mottlled yellow-orange.				0.5
	_	Ŧ					Gritty. Rare rounded pebbles to 30mm (possible				
	В	Т					laterite) within the upper parts of the profile. Grades down into grey khaki clay with yellow-orange			RESIDUAL	
					\setminus		mottles. Gritty.			REGIDUAL	
			1.0	24		\setminus	monico. Ontry.		MD		1.0
			1.0	*****			0.70 - 1.0 Weathered Siltstone. Grey to pale brown	D			1.0
				1			to mauve.				
				1		\setminus					
								ĺ			
			1.5				SBH 10 terminated at 1.0 m depth.				1.5
							Son to terminated at 1.0 in depth.				
			2.0								2.0
			2.5								2.5
			3.0								3.0
			3.5	1							3.5
			Notes	:			Density Index		M-1.1		
Con VS	siste		y Soft				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dr		
s		Soft					L Loose D Disturbed Sample		M Mo		
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We		
St		Stiff					D Dense (50mm diam.)			astic Limit	
VSt H		Very	y Stiff d				VD Very Dense N S.P.T. Value		WI Liq	juid Limit	
		1 1010	u								

				L	ar	ry	Cook Consulting Pty Ltd			Job No: 18047 Hole No: SBH 11 Sheet 1 of 1	
	CG	0	FТ	ΈS	зт	н	OLE				
	ent:		_		_	<u> </u>	B. Statham	Test	Bore I	ocation: Ref. Figure 1	
-	oject	:					Wastewater Management Investigations			d: Drilling Rig	
			catic	n:			Lot100 DP1064980		linates	Easting: 0379640	
	-						792 Seaham Road	•	Grid)	Northing: 6381601	
							Seaham	Logge	ed by:	LLC Date: Feb 20	12
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
Ν							0.00m - 0.08m Silty Sandy Loam. Brown. Dry and	D	L	TOPSOIL	
Т					\setminus		loose. Common organics. Fragments of sub-			COLLUVIAL	
L	В	Т				\setminus	angular siltstone to 20mm.		L/		
					\setminus		0.08m - 0.26m Silty Sandy Loam. Grey to pale	D		COLLUVIAL/RESIDUAL	
			0.5			\setminus	brown . Loose and dry to moist. Common organics.				0.5
	D	Ŧ		5			Gritty.		MD	COLLUVIAL/RESIDUAL	
	В	Т			\backslash		0.26m - 0.60m Clay Loam to Light/Medium Clay. Red-brown motted khaki-yellow grey.	D	MD	COLLUVIAL/RESIDUAL	
							0.60m - 0.80m Clay Loam to Light/Medium Clay.	D		RESIDUAL	
			1.0				Grey to pale brown motted khaki-yellow.		MD		1.0
					\setminus		0.80 - 1.00 Siltstone. Weathered, pale brown to	D			
						$\overline{\ }$	beige.				
							SBH 11 terminated at 1.00 m depth.				
			1.5								1.5
			2.0								2.0
1			2.5								2.5
1			<u> </u>								
Í			——								
1											\vdash
1			3.0								3.0
1				1							
1]							
1											
1			L								
	lassi		3.5								3.5
	nsiste	Very Very Soft Firm Stiff	n y Stiff	t			Density Index Samples VL Very Loose B Bulk Sample L Loose D Disturbed Sample MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.) VD Very Dense N S.P.T. Value			y ist	

										Job No: 18047	
				1	ar	r	Cook Consulting Pty Ltd			Hole No: SBH 12	
					aı	' y	COOK Consulting I by Eld			Sheet 1 of 1	
LC)G	0	FΤ	ΈS	т	H	OLE				
Clie	ent:						B. Statham	Test	Bore L	ocation: Ref. Figure 1	
Pro	ject	:					Wastewater Management Investigations			d: Drilling Rig	
Pro	ject	Lo	catio	n:			Lot100 DP1064980	Coord	linates	Easting: 0379777	
							792 Seaham Road	(MGA	Grid)	Northing: 6381527	
							Seaham	Logg	ed by:	LLC Date: Feb 20	12
۶ſ				ß		n			11		
Groundwater	/	sts	(L	Graphic Log		Classification			Consistency, Rel. Density		ĉ
ndv	oles	Те	h (n	hic	ð	sific	Description	ture	iste Der	Additional Comments	u) u
rou	Samples/	Field Tests	Jepth (m)	rap	Unified	ase		Moisture Condition	ons el. I		Depth (m)
	ů	ίΞ	ŏ	Ō	Ē	Ū					ŏ
N							0.00m - 0.10m Silty Sandy Loam. Brown topsoil.	D		COLLUVIAL/TOPSOIL	
	Р	т					Dry and loose. Common organics. Fragments of			COLLUVIAL	
L	В	Т					weathered oxidised siltstone. 0.10m - 0.24m Silty Sandy Loam. Grey to pale	D	'/	COLLUVIAL/RESIDUAL	
			0.5		\setminus		brown . Loose and dry to moist. Common organics.			COLLOVIAL/RESIDUAL	0.5
			0.5			\setminus			MD		0.5
	в	т					Gritty. 0.24m - 0.70m Silt Clay Loam to light/medium				
	Б	1					Clay. Yellow brown to khaki-grey motted. Gritty. *	D		RESIDUAL	
	-				$\langle \rangle$		Note no red clay		MD	REGIDORE	
			1.0		\setminus		0.70m - 0.80m Siltstone. Weathered cream to pale				1.0
			1.0			\setminus	brown-mauve.				1.0
							SBH 12 terminated at 0.8 m depth.				
			1.5								1.5
			2.0								2.0
			2.5								2.5
			3.0								3.0
			3.5								3.5
Exp	lanat	ory I	Notes	:					I	1	0.0
	siste						Density Index Samples		Moistu	re	
vs		-	/ Soft				VL Very Loose B Bulk Sample		D Dr		
S		Soft					L Loose D Disturbed Sample		M Mo		
F St		Firm Stiff					MDMedium DenseU50Undisturbed SampleDDense(50mm diam.)		W We	et astic Limit	
St VSt			/ Stiff				VD Very Dense N S.P.T. Value			uid Limit	
н		Hard					,				

										Job No: 18047	
				L	ar	ry	Cook Consulting Pty Ltd			Hole No: SBH 13 Sheet 1 of 1	
		_									
		0	FΤ	ES	ST	H	OLE				
	ent:						B. Statham			ocation: Ref. Figure 1	
	ject						Wastewater Management Investigations		Metho linates	d: Drilling Rig	
Pro	jeci	LO	catio	on:			Lot100 DP1064980 792 Seaham Road		Grid)	Easting: 0379660 Northing: 6381530	
							Seaham	•	ed by:		12
L				1		c		99			1
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency, Rel. Density	Additional Comments	Depth (m)
N I	-	Ŧ			/		0.00m - 0.10m Silty Sandy Loam. Brown. Gritty. Graduational. Common organics. Dry and loose.	D	L	COLLUVIAL/TOPSOIL COLLUVIAL	
L	В	Т				$\left \right\rangle$	0.10m - 0.30m Silty Sandy Loam. Grey to	D	L	COLLUVIAL/RESIDUAL	
			0.5		\setminus		gradational brown to pale brown. Common organics.			COLLOVIAL/INLOIDOAL	0.5
			0.0			\setminus	Dry and loose.		SD		0.0
	В	Т					0.30m - 0.80m Silty Clay Loam to Ligt/Medium	ſ			
							Clay. Red brown gritty mottled khaki-grey grades	D			
					\setminus		quickly down into grey-pale brown mottled yellow-			RESIDUAL	
			1.0			\mathbb{N}	khaki silty clay loam to light/medium clay. Gritty.		SD		1.0
							0.80m - 1.00m Weathered Siltstone. Pale brown to	D/			
						\setminus	mauve and cream .	/			
								ſ			
			1.5				SBH 13 terminated at 1.0m depth.				1.5
				-							
			2.0								2.0
			2.5								2.5
			2.5								2.0
				4							
			3.0	-							3.0
				-							
				1							
]							
			3.5								3.5
	lanat siste		Votes	S:			Density Index Samples		Moistu	re	
vs			/ Sof	t			VL Very Loose B Bulk Sample		D Dr		
S		Soft					L Loose D Disturbed Sample		M Mo		
F St		Firm Stiff					MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.)		W We Wp Pla	et astic Limit	
VSt			/ Stif	f			VD Very Dense N S.P.T. Value			quid Limit	
Η		Har	d								

										Job No: 18047	
				L	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 14	
				_		• •				Sheet 1 of 1	
		0	FΤ	ΈS	т	H	OLE				
	ent:						B. Statham			ocation: Ref. Figure 1	
	ject		ootio				Wastewater Management Investigations		Vietho linates	d: Drilling Rig	
PIC	jeci	LO	catio	n:			Lot100 DP1064980 792 Seaham Road		Grid)	Easting: 0379652 Northing: 6381678	
							Seaham	`	ed by:		12
_						c	ocanam	Logg			
ZGroundwater	1	sts	(ר	Graphic Log		Classification		. c	Consistency/ Rel. Density		`
ъри	oles	е́	h (n	hic	pe	sific	Description	ture litio	iste Der	Additional Comments	h (n
rou	Samples/	⁼ ield Tests	Depth (m)	irap	Unified	las		Moisture Condition	ons el. l		Depth (m)
0 N	S	ш	Δ	U		с О	0.00m - 0.10m Silty Sandy Loam. Brown. Common			TOPSOIL	
1							organics. Dry and Loose. Gritty.		1-	COLLUVIAL	-
Ļ	в	т					0.10m - 0.45m Silty Sandy Loam. Grey to pale	М	L		—
							brown. Gritty. Organics common. Moist and loose.				
			0.5		/	/	Tends to be more silty.				0.5
							0.45m - 1.40m Silty Clay Loam to Light/Medium		MD	COLLUVIAL/RESIDUAL	
	В	Т					Clay. Khaki-yellow-brown to red-brown patchy.	D			
							Gritty. Fragments to 5mm. Rounded Pebbles to				
							15mm.				
			1.0			/	1.40m - 1.60m Weathered Siltstone. Light brown to red-brown weathered siltstone.	D			1.0
						$\left(\right)$	red-brown weathered sitistone.	\sim			
					/			\backslash	\backslash		
					$\langle \rangle$	/	SBH 14 terminated at 1.60 m depth.		MD		
			1.5		/				\backslash	RESIDUAL	1.5
					\langle						
			2.0								2.0
			2.0								2.0
			2.5								2.5
			3.0								3.0
	lore	05.1	3.5								3.5
	lanat siste		Votes	•			Density Index Samples		Moistu	re	
٧S			/ Soft				VL Very Loose B Bulk Sample		D Dry	<u>/</u>	
S		Soft					L Loose D Disturbed Sample		M Mo		
F St		Firm Stiff					MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.)		W We Wp Pla	et astic Limit	
VSt			/ Stiff				VD Very Dense N S.P.T. Value		-	uid Limit	
н		Hard							-		

										Job No: 18047	
				L	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 15	
						,	3 ,			Sheet 1 of 1	
LC)G	0	FΤ	ΈS	Т	H	OLE				
Clie	ent:						B. Statham	Test	Bore L	ocation: Ref. Figure 1	
	oject						Wastewater Management Investigations			d: Drilling Rig	
Pro	oject	Lo	catio	on:			Lot100 DP1064980		dinates	Easting: 0379608	
							792 Seaham Road		A Grid)	Northing: 6381737	10
				1			Seaham	Logg	ed by:	LLC Date: Feb 20	12
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	iified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
	Sa	Ξ	De	ō	Ľ	õ			Con Rel.		å
N I L	в	т					0.00m - 0.07m Silty Sandy Loam. Brown, topsoil. Common organics. Dry and loose. Gritty.	D		COLLUVIAL/TOPSOIL COLLUVIAL COLLUVIAL/RESIDUAL	
					\setminus		0.07m - 0.20m Silty Sandy Loam. Grey brown to	D			
			0.5		,	\setminus	pale brown Gritty, rounded pebbles to 5mm. Silty		ĺ		0.5
	В	т					to clayey. Gravel on top of clay (pebble/boulder to 10cm) 0.20m - 0.80m Silty Clay Loam to Light/Medium		MD		
				55			Clay. Red-brown. Gritty mottled khaki grey. Grading			RESIDUAL	
			1.0				to lighter coloured.		MD		1.0
							0.80m - 1.0m Weathered Siltstone. Off white, silty	D			
						\setminus	sandy rocks				
			1 5				SBH 15 terminated at 1.0 m depth.				15
			1.5								1.5
			2.0								2.0
			2.5								2.5
			3.0	1							3.0
				1							
			0.5								0.5
Fxn	lanat	orv N	3.5 Notes						I	1	3.5
	siste	-	.0.00	•			Density Index Samples		<u>Moistu</u>	re	
vs			/ Soft				VL Very Loose B Bulk Sample		D Dr		
S F		Soft Firm					L Loose D Disturbed Sample MD Medium Dense U50 Undisturbed Sample		M Mo		
г St		Stiff					D Dense (50mm diam.)			astic Limit	
VSt		Very	/ Stiff				VD Very Dense N S.P.T. Value		•	quid Limit	
Н		Hard	b								

										Job No: 18047	
				L	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 16	
						- /				Sheet 1 of 1	
LC)G	O	FΤ	ΈS	Т	H	OLE				
Clie							B. Statham	Test	Bore L	ocation: Ref. Figure 1	
Pro	ject						Wastewater Management Investigations			d: Drilling Rig	
Pro	ject	Lo	catio	on:			Lot100 DP1064980		linates	Easting: 0379520	
							792 Seaham Road	-	Grid)	Northing: 6381782	
				1		_	Seaham	Logge	ed by:	LLC Date: Feb 201	12
Groundwater	Samples/	Field Tests	Jepth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
Gro	San	Fiel	Dep	Gra	Unii	Cla		Moi Cor	Con: Rel.		Dep
N I L	В	т				/	0.00m - 0.05m Silty Sandy Loam. Brown. Dry and Loose. Common organics. Gritty. Sub angular siltstone fragments up to 15mm.	D	L	COLLUVIAL/TOPSOIL COLLUVIAL	
			0.5		\setminus		0.05m - 0.30m Silty Sandy Loam. Grey to pale brown-khaki clay clods (red-brown). Common	D		COLLUVIAL/RESIDUAL	0.5
	в	т				\setminus	organics. Gritty. Fragments of siltstone to 20mm		MD		
							0.30m - 0.80m Silty Loam to Light/Medium Clay. Red-brown mottled grey-khaki. Gritty. Dry and	D		RESIDUAL	
			1.0	-	$\langle \rangle$		medium dense.		MD	RESIDUAL	1.0
			1.0		\setminus		0.80m - 0.90m Clay Loam. Pale brown. Gritty.	D/	/		1.0
						\setminus	Minor yellow mottles.		MD		
							0.90m - 1.10m Weathered Siltstone. Beige-pale	D	ľ		
						\backslash	brown				
			1.5								1.5
				-			SBH 16 terminated at 1.10 m depth.				
			2.0								2.0
			0.5								0.5
			2.5								2.5
]				1			
			3.0								3.0
			3.5								3.5
Con	siste	ncy	Notes				Density Index Samples		Moistu		
VS S		Very Soft	/ Soft	I.			VL Very Loose B Bulk Sample L Loose D Disturbed Sample		D Dr M Mo	•	
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We	et	
St		Stiff					D Dense (50mm diam.)			astic Limit	
VSt H		Very Hare	∕ Stiff d				VD Very Dense N S.P.T. Value		WI Liq	juid Limit	
		i idi (u								

										Job No:	18047	
				L	ar	rv	Cook Consulting Pty Ltd			Hole No:	SBH 17	
				_	~	• •				Sheet 1	of 1	
		0	FΤ	ΈS	ЪТ	Н	OLE	T				
Cli							B. Statham			ocation: Ref		
	oject						Wastewater Management Investigations		Vietho linates	d: Drilling R		
Pro	bjeci	LO	catic	on:			Lot100 DP1064980 792 Seaham Road		Grid)		0379617 6381914	
							Seaham	`	ed by:		Date: Feb 20 ⁻	12
E.					I	-	Seanam	LUgge			Date. 1 eb 20	12
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additiona	I Comments	Depth (m)
Ν							0.00m - 0.05m Silty Sandy Loam. Brown. Dry and	D	Ľ	COLLUVIAL		
Т						k	loose. Common organics. Gritty. Common rounded		\sim	COLLUVIAL		
L	В	Т	L				pebbles to 10mm. Boulders rounded upto 50mm	\swarrow	L			
1			<u> </u>			1	0.05m - 0.34m Silty Sandy Loam. Brown to grey	D				
1			0.5				brown. Gritty. Rounded pebbles to 5mm. Dry/loose.			COLLUVIAL	RESIDUAL	0.5
1	в	т	<u> </u>				Slighty clayey towards base. Common organics. 0.34m - 0.80m Silty Clay Loam to Light/ medium	D	MD			
	Б	1					Clay. Yellow-red-brown motted orange-khaki-grey.					
				-			Gritty.			RESIDUAL		
			1.0				0.80m - 1.20m Clay Loam. Grades down into	D	MD			1.0
							dominantly grey-khaki with red-orange brown					
							mottles and patches. Gritty.					
							1.20 - 1.60 Siltstone. Weathered grey-pale brown.	D	MD	RESIDUAL		
			1.5			\vee						1.5
					\vee		SBH 17 terminated at 1.60 m depth.					
				-								
			2.0									2.0
												<u> </u>
1]								
1			2.5									2.5
1												
1												
1			<u> </u>									
1				-								
1			3.0									3.0
1			<u> </u>	1								
1				1								
1			<u> </u>	1								
1			3.5	1								3.5
			Notes	5:								
Cor VS	siste		. 0 - /				Density Index Samples VL Very Loose B Bulk Sample		Moistur			
vs S		Soft	y Soft				VL Very Loose B Bulk Sample L Loose D Disturbed Sample		D Dry M Mo			
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We			
St		Stiff					D Dense (50mm diam.)			astic Limit		
VSt			y Stiff				VD Very Dense N S.P.T. Value		WI Liq	uid Limit		
н		Har	a									

										Job No: 18047	
				L	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 18	
						- /	······································			Sheet 1 of 1	
LC)G	O	FΤ	ΈS	Т	H	DLE				
	ent:						B. Statham	Test	Bore L	ocation: Ref. Figure 1	
Prc	ject	:					Wastewater Management Investigations	Test	Metho	d: Drilling Rig	
Pro	oject	Lo	catio	on:			Lot100 DP1064980		dinates	Easting: 0379610	
							792 Seaham Road		Grid)	Northing: 6381844	
				1		_	Seaham	Logg	ed by:	LLC Date: Feb 20	12
ater		s		go		Classification			ity/		
Groundwater	les/	[−] ield Tests	Depth (m)	Graphic Log	5	fica	Description	ure tion	Consistency. Rel. Density	Additional Comments	Depth (m)
uno	Samples/	- ple	pth	aph	Unified	assi		Moisture Condition	onsi: J. D		pth
	Sa	Ĕ	Ď	ō	IJ	ö			Ŭ Å		ă
N					/		0.00m - 0.07m Silty Sandy Loam. Brown topsoil.	D		COLLUVIAL/TOPSOIL	
I L	В	т					Gritty. Dry/loose. Organics. 0.07m - 0.20m Silty Sandy Loam. Brown to grey	D	L	COLLUVIAL/RESIDUAL	
		'			\setminus		brown. Mottled yellow in parts. Dry and loose.				
			0.5			\setminus	Common Organics.		MD		0.5
							0.20m - 0.70m Clay Loam to Light/Medium Clay.	D			
	В	Т					Red brown-orange. Gritty. Mottled yellow-orange.				
							Dry and medium dense to plastic.			RESIDUAL	
			4.0				0.70m - 1.50m Silty Clayey Loam to Light Clay. Grey-khaki Gritty with pebbles to 5mm. Dry and	D	D		10
			1.0				dense.				1.0
							1.50m - 1.80m Weathered Siltstone. Beige to pale				
						\langle	brown with rounded pebbles to 25m (in rock-				
					/		conglomerites).	D	\land		
			1.5		/	/					1.5
						ľ	SBH 18 terminated at 1.80 m depth.		D	RESIDUAL	
					/				$\left \right\rangle$		
				<u></u>	ĺ.						
			2.0								2.0
			2.5								2.5
			2.5								2.5
				1							
]							
			3.0	•							3.0
			3.5								3.5
			Notes	s:					Maint		
Con VS	siste		/ Soft				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dr		
s		Soft					L Loose D Disturbed Sample		M Ma	ist	
F		Firm	ı				MD Medium Dense U50 Undisturbed Sample		W We		
St VSt		Stiff Verv	/ Stiff				D Dense (50mm diam.) VD Very Dense N S.P.T. Value			astic Limit Juid Limit	
H		Hard									
-						-					

										Job No: 18047	
				L	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 19)
				_		• •				Sheet 1 of 1	
		0	FΤ	ΈS	т	H	OLE				
Cli							B. Statham			ocation: Ref. Figure	1
	oject						Wastewater Management Investigations			d: Drilling Rig	
Pro	ojeci	LO	catio	n:			Lot100 DP1064980		dinates A Grid)	Easting: 037952	
							792 Seaham Road Seaham	`	ed by:	Northing: 638188	
_							Seanan	LUGG			
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comme	Depth (m)
Ν							0.00m - 0.10m Silty Sandy Loam. Brown. Common	D	L	COLLUVIAL/TOPS	OIL
		_			/	/	organics. Gritty. Dry and Loose.		Γ.	COLLUVIAL	
L	В	Т					0.10m - 0.28m Silty Sandy Loam. Grey-brown			0011111/201	
				53			Common organics. Gritty. Pebbles (rounded) to	D		COLLUVIAL	
			0.5	3			30mm. Gritty and fragments of siltstone to 80mm 0.28m - 0.60m Silty Clay Loam to Light Clay.	D	MD/D		0.5
	В	т		33			Yellow-brown mottled orange-red gritty. Dry,			COLLUVIAL/RESIDU	AI
				33			medium dense to dense.		D		
				33			0.60m - 0.90m Silty Clay Loam to Light/ Medium	D			
			1.0	3			Clay. Khaki yellow to grey mottled yellow-orange.			RESIDUAL	1.0
					$\backslash \rangle$		Gritty. Pebbles to 20mm (rounded).		/ d/		
					\setminus	\setminus		D			
							0.90m - 1.0m Siltstone. Pale brown to yellow	<u>ر ا</u>	ľ		
						\setminus	brown. Contains pebbles - possible conglomerate.				
			1.5					γ			1.5
							SBH 19 terminated at 1.00 m depth.				
							-				
			2.0								2.0
			2.0								2.0
1			2.5								2.5
1											
1											
1											
1			0.0								
1			3.0								3.0
1											
1											
1				1							
			3.5								3.5
			Notes	:							
Cor VS	siste		/ Soft				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dr		
s		Soft	·				L Loose D Disturbed Sample		M Mo		
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We		
St		Stiff					D Dense (50mm diam.)		•	astic Limit	
VSt			/ Stiff				VD Very Dense N S.P.T. Value		WI Liq	uid Limit	
н		Hare	u								

										Job No: 18047	
					ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 20	
					aı	' y	COOK Consulting I by Ltd			Sheet 1 of 1	
LC)G	0	FΤ	ΈS	т	Н	OLE				
Clie	ent:						B. Statham			ocation: Ref. Figure 1	
	ject						Wastewater Management Investigations			d: Drilling Rig	
Pro	ject	t Lo	catio	on:			Lot100 DP1064980		dinates	Easting: 0379444	
							792 Seaham Road	•	A Grid)	Northing: 6381776	
							Seaham	Logg	ed by:	LLC Date: Feb 20	12
er				D		uc			22		
wat	s/	sts	Ê	Lo		cati		o ۲	enc nsit		Ê
pur	ple	I Te	th (I	bhic	ed	sific	Description	ditio	sist	Additional Comments	th (I
Groundwater	Samples/	[−] ield Tests	Jepth (m)	Graphic Log	Unified	Classification		Moisture Condition	Consistency, Rel. Density		Depth (m)
N	0	ш				0	0.00m - 0.10m Silty Sandy Loam. Brown Dry and	<u>20</u>		COLLUVIAL/TOPSOIL	
1					/		loose, abundant organics, gritty.		-	COLLUVIAL	
	В	Т					0.10m - 0.60m Silty Sandy Loam. Brown to grey		L		
							brown Dry and loose. Common organics. Boulders	D			
			0.5				to 100mm. Gritty. Fragments of sub angular				0.5
							oxidised siltsone (rare) to 25mm.				
	В	Т					0.60m - 0.90m Silty Clay Loam to Light/ Medium	D	SD	COLLUVIAL/RESIDUAL	
							Clay. Red-orange brown.Gritty. Dry, medium dense				
							to dense, plastic. Mottled grey-khaki.				
			1.0	5 3						RESIDUAL	1.0
							0.90m - 1.40m Clay Loam to Light Clay. Off white	D	SD		
							to grey, mottled red- orange. Gritty.				
						\checkmark	1.40m - 1.70m Weathered Siltstone. Grey-off	\sim			
					\checkmark		white.	D	\sim		
			1.5					\searrow	SD	RESIDUAL	1.5
					/	Í	SBH 20 terminated at 1.70 m depth.				
					/		·				
			0.0								0.0
			2.0								2.0
			2.5								2.5
				1							
]							
			3.0								3.0
			0.5								0.5
Exp	anat	tory	3.5 Notes								3.5
	siste						Density Index Samples		Moistu	re	
vs		-	/ Soft				VL Very Loose B Bulk Sample		D Dr	•	
S		Soft					L Loose D Disturbed Sample		M Mo		
F St		Firm Stiff					MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.)		W We	et astic Limit	
St VSt			/ Stiff				VD Very Dense N S.P.T. Value			juid Limit	
н		Har					·				
-											

										Job No: 18047	
				1	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 21	
						. y	Cook Concurring I ty Lta			Sheet 1 of 1	
		0	FΤ	ΈS	Ъ	Н	OLE	-			
	ent:						B. Statham			ocation: Ref. Figure 1	
	oject		o o ti o				Wastewater Management Investigations		Vietho linates	d: Drilling Rig	
Pro	ojeci	LO	catio	n:			Lot100 DP1064980 792 Seaham Road		Grid)	Easting: 0379381 Northing: 6381619	
							Seaham	`	ed by:		10
						-	Seanan	LUYYE	su by.	Date. Feb 20	12
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
Ν							0.00m - 0.13m Silty Sandy Loam. Brown. Dry and	D	L	COLLUVIAL/TOPSOIL	
	_	-					Loose. Abundant organics, grity.			0011111/001	—
L	В	Т					0.13m - 0.60m Silty Sandy Loam. Grey to grey			COLLUVIAL	
			0.5				brown Dry to moist. Common organics. Common rounded pebbles and boulders to 80mm. Abundant	D/M	L		0.5
Í			0.5				gravel/pebbles/boulders.				0.5
	в	т					0.60m - 1.10m Silty Clay Loam to Light/ Medium			COLLUVIAL/RESIDUAL	
	_	•		5			Clay. Red-brown-orange. Gritty, plastic, dry and	D	MD		
							dense/medium dense. Some pebbles (green)				
			1.0				rounded to 15mm.				1.0
				<u> </u>		\sim	1.10m - 1.40m Silty Clay Loam to Light/ Medium		/		
							Clay. Yellow-orange mottled grey-black, gritty,	D	MD	COLLUVIAL/RESIDUAL	
							abundant pebbles to 20mm.				
				-	\sim	ſ	1.40m - 1.50m Weathered Siltstone. Off white to	D	MD	RESIDUAL	
			1.5	<u>2,22,3</u>			grey-khaki with pebbles, Possible conglomerate.			RESIDUAL	1.5
						/					
							CDU 24 termineted at 4 50 m doubt				
							SBH 21 terminated at 1.50 m depth.				
			2.0								2.0
			2.5								2.5
Í			2.0								2.3
Í				1							
Í				1				1			
Í											
Í			3.0								3.0
			3.5								3.5
<u>Cor</u> VS S F St	<u>isiste</u>	Very Soft Firm Stiff	Votes y Soft			<u> </u>	Density Index Samples VL Very Loose B Bulk Sample L Loose D Disturbed Sample MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.) VD Very Dense Very Low	L		/ /st et /stic Limit	
VSt H		Very Har	∕ Stiff d				VD Very Dense N S.P.T. Value		WI LIQ	uid Limit	

										Job No: 18047	
				1	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 22	
					ar	. y				Sheet 1 of 1	
LC)G	0	FΤ	ΈS	т	Н	OLE				
Clie	ent:						B. Statham	Test	Bore L	ocation: Ref. Figure 1	
Pro	ject	:					Wastewater Management Investigations	Test	Metho	d: Drilling Rig	
Pro	ject	Lo	catio	on:			Lot100 DP1064980		linates	Easting: 0379452	
							792 Seaham Road		Grid)	Northing: 6381693	
				1	1	_	Seaham	Logg	ed by:	LLC Date: Feb 20	12
ter				b		uo			<u>ک</u> کر		
wa	/Si	⁼ ield Tests	ίΞ.	L L		cati	Description	e u	tenc	Additional Comments	Ê
nnc	nple	Τp	oth (phi	fied	ssifi	Description	stur	De	Additional Comments	oth (
Groundwater	Samples/	ie	Depth (m)	Graphic Log	Unified	Classification		Moisture Condition	Consistency, Rel. Density		Depth (m)
Ν							0.00m - 0.10m Silty Sandy Loam. Brown. Dry and	D	L	COLLUVIAL/TOPSOIL	
Т							loose. Abundant organics. Gritty.			COLLUVIAL	
L	В	Т					0.10m - 0.30m Silty Sandy Loam. Grey to grey-	D	L		
					\setminus		brown. Dry and loose. Gritty. Some fragments of			COLLUVIAL/RESIDUAL	
			0.5				siltstone, exotics to 50mm. Rounded pebbles and		ſ		0.5
	_	-					boulders to 150mm.		00		
	В	Т					0.30m - 0.80m Silty Clay Loam to Light/ Medium	D	SD		
							Clay. Red brown. Gritty. Mottled khaki-grey.			COLLUVIAL/RESIDUAL	
			1.0			\backslash	0.80m - 1.30m Clay Loam to Light/ Medium Clay.	D	SD	OOLLO VIAL/REGIDOAL	1.0
			1.0				Dark grey-khaki. Gritty with red-orange-brown		00		1.0
							mottles.				
						\sim	1.30m - 1.60m Weathered siltstone. Yellow brown				
					ſ		to pale brown.	D	SD	RESIDUAL	
			1.5			\vee					1.5
					\vee		SBH 22 terminated at 1.60 m depth.				
			2.0								2.0
											<u> </u>
			2.5								2.5
				1							
				1							
				4							
			0.0	4							
			3.0	1							3.0
				1							$\left - \right $
				1							
			3.5								3.5
-		-	Votes	S:							
Con VS	siste		/ Soft				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dr		
v S S		Soft		L			L Loose D Disturbed Sample		M Ma	•	
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We	et	
St		Stiff					D Dense (50mm diam.)			astic Limit	
VSt H		Very	/ Stiff d	r			VD Very Dense N S.P.T. Value		VVI Lic	quid Limit	
		1 1010									

										Job No: 18047	
				L	ar	rv	Cook Consulting Pty Ltd			Hole No: SBH 23	
				-	ai	• •				Sheet 1 of 1	
		0	FΤ	ΈS	ЗT	Н	OLE				
Cli							B. Statham			ocation: Ref. Figure 1	
	oject						Wastewater Management Investigations			d: Drilling Rig	
Pro	oject	Lo	catic	on:			Lot100 DP1064980		dinates	Easting: 0379333	
							792 Seaham Road	`	Grid)	Northing: 6381485	
_			-	1			Seaham	Logge	ed by:	LLC Date: Feb 20	12
Groundwater	oles/	Field Tests	Depth (m)	Graphic Log	pé	Classification	Description	iure lition	Consistency/ Rel. Density	Additional Comments	(m) c
	Samples/	Field	Dept	Grap	Unified	Clas		Moisture Condition	Cons Rel.		Depth (m)
N							0.00m - 0.08m Silty Sandy Loam. Brown Dry and	D	L	COLLUVIAL/TOPSOIL	_
		-			$\left \right\rangle$		loose, abundant organics. Gritty.	<u> </u>	ΓL,		
L	В	Т			\setminus	$\left \right\rangle$	0.08m - 0.20m Silty Sandy Loam. Grey brown	D		COLLUVIAL/RESIDUAL	
						Ν	common organics, abundant gravel and		ĺ		
			0.5				pebbles/boulders to 50mm. Gritty.	K_	0.0		0.5
	_	-					0.20m - 0.90m Silty Clay Loam to Light/ Medium	D	SD		-
	В	Т					Clay. Orange-red-brown gritty. Mottled khaki-grey.				
							0.90m - 1.50m Clay Loam to Light/ Medium Clay.				
			1.0		\sim		Dark grey-khaki with mottled yellow-orange-red	D	SD	COLLUVIAL/RESIDUAL	1.0
			1.0				patches. Gritty.		00		1.0
						/	1.50m - 1.80m Weathered Siltstone . Pale brown to				
						\backslash	off white.				
					/	ſ /		<pre></pre>			
			1.5		V	//		$\left \right\rangle$			1.5
					[Y	SBH 23 terminated at 1.80 m depth.		SD	RESIDUAL	
					/				\backslash		
					V				$ \setminus$		
			2.0								2.0
			2.5								2.5
1				-							
1				4	1						
1			3.0	1	1						3.0
			3.5								3.5
Exp	lanat	ory l	Notes	s:							0.0
	nsiste						Density Index Samples		Moistu		
vs			/ Soft	t			VL Very Loose B Bulk Sample		D Dr		
S F		Soft Firm					L Loose D Disturbed Sample MD Medium Dense U50 Undisturbed Sample		M Mo W We		
г St		Stiff					D Dense (50mm diam.)			astic Limit	
VSt			/ Stiff	:			VD Very Dense N S.P.T. Value			uid Limit	
н		Har							-		

						Job No: 18047							
	Larry Cook Consulting Pty Ltd							Hole No: SBH 24 Sheet 1 of 1					
	LOG OF TEST HOLE												
Client: B. Statham Test Bore Location: Ref. Figure													
							IVIetho dinates	d: Drilling Rig Easting: 0379223					
FIC	jeci		callo				Lot100 DP1064980 792 Seaham Road		MGA Grid) Northing: 6381349				
							Seaham		Logged by: LLC Date: Feb 2012				
<u> </u>				- 33									
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density		Depth (m)		
Ν							0.00m - 0.45m Silty Sandy Loam. Brown grey.	D	L	COLLUVIAL/TOPSOIL			
		т					Gritty. Common Organics. Dry and loose. Moist.		1				
L	В	Т					NO gravel or pebbles. 0.45m - 0.50m Silt Clay Loam to Light/ Medium						
			0.5		\sim		Clay. Yellow-brown mottled red-orange-khaki. Dry	D	MD/D	COLLUVIAL	0.5		
						\backslash	but dense/medium dense.		+				
									1				
							SBH 24 terminated at 0.50 m depth.		1				
			1.0								1.0		
											<u> </u>		
			1.5								1.5		
			2.0								2.0		
			2.0								2.0		
			2.5								2.5		
									1		\vdash		
									1		\square		
			3.0								3.0		
									1				
									1				
											\vdash		
			3.5								3.5		
			Notes	:						1			
	siste		. 0 - 4				Density Index Samples VL Very Loose B Bulk Sample		<u>Moistu</u> D Dr				
VS S		Very Soft	/ Soft				L Loose D Disturbed Sample		M Mo				
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We				
St		Stiff					D Dense (50mm diam.)		-	astic Limit			
VSt H		Very	∕ Stiff d				VD Very Dense N S.P.T. Value		WI Lic	quid Limit			
Ľ		11010	u										

						Job No: 18047						
	Larry Cook Consulting Pty Ltd							Hole No: SBH 25				
								Sheet 1 of 1				
LC	ЭG	0	FΤ	ΈS	ЪТ	Н	OLE					
-	Client: B. Statham Test Bore Location: Ref. Figure 1											
	oject						Wastewater Management Investigations			d: Drilling Rig		
Pro	oject	Lo	catio	n:			Lot100 DP1064980		dinates	Easting: 0379469		
							792 Seaham Road			Northing: 6381283	10	
-	-	Seaham				Seanam	Logge	ed by:	LLC Date: Feb 20	12		
Groundwater	Samples/	Field Tests	Depth (m)	Graphic Log	Unified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)	
Ν							0.00m - 0.15m Silty Sandy Loam. Dark brown to	D	L	TOPSOIL		
		-					grey brown,					
L	В	Т			\setminus		0.15m - 0.20m Sandy Loam. Grey to pale brown.		1			
			0.5				Common rounded laterite fragments to 35mm atop the clay, 'old' surface on clay and ironstone.	D	Y	COLLUVIAL/RESIDUAL	0.5	
			0.5	53		$\left \right\rangle$	the clay, our surface on clay and nonstone.		MD		0.5	
	в	т				`	0.20m - 0.70m Clay Loam to Light Medium Clay.	ĹD				
	_	•		33	\setminus		Yellow - brown to khaki motted orange tending to		\boldsymbol{V}	RESIDUAL		
				33		\setminus	red - brown. Gritty at 0.60m					
			1.0	33		Ì	0.70 - 1.00 Grey to pale brown - beige. Sandy	D	MD		1.0	
					$\$		weathered rock.					
							SBH 25 terminated at 1.0 m depth.					
			1.5								1.5	
			2.0								2.0	
			2.0								2.0	
				1								
1			2.5								2.5	
1											\mid	
1											\vdash	
1			3.0								3.0	
1			3.0								3.0	
1											\square	
1				1							\square	
	3.5 3.5											
			Votes	:			Density Index Samples		Moint			
Cor VS	Consistency Density Index Samples Moisture VS Very Soft VL Very Loose B Bulk Sample D Dry											
s		Soft					L Loose D Disturbed Sample		M Mo			
F		Firm					MD Medium Dense U50 Undisturbed Sample		W We			
St		Stiff					D Dense (50mm diam.)			astic Limit		
VSt H	VSt Very Stiff VD Very Dense N S.P.T. Value WI Liquid Limit H Hard											

APPENDIX D

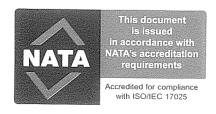
LABORATORY CERTIFICATE

Page 1 of 4

S Y D N E Y A N A L Y T I C A L L A B O R A T O R I E S

Office: PO BOX 48 ERMINGTON NSW 2115

Laboratory: 1/4 ABBOTT ROAD SEVEN HILLS NSW 2147 Telephone: (02) 9838 8903 Fax: (02) 9838 8919 A.C.N. 003 614 695 A.B.N. 81 829 182 852 NATA No: 1884


ANALYTICAL REPORT for:

LARRY COOK

PO BOX 8146 TUMBI UMBI 2261

ATTN: LARRY COOK

- JOB NO: SAL23973F
- CLIENT ORDER: SEAHAM
- DATE RECEIVED: 17/02/12
- DATE COMPLETED: 08/03/12
- TYPE OF SAMPLES: SOILS
- NO OF SAMPLES: 33

. Issued on 15/03/12

Lance Smith (Chief Chemist)

Page 2 of 4

ANALYTICAL REPORT

JOB NO: SAL23973F CLIENT ORDER: SEAHAM

SAMPLES	рН 1:5	COND. dS/m	CEC cmol+/kg	ESP %	*P.SORP mg/kg	*EMERS. Class
<pre>1 SBH1/0.30 2 SBH2/0.20 3 SBH2/0.80 4 SBH3/0.15 5 SBH4/0.20 6 SBH4/0.60 7 SBH5/0.30 8 SBH6/0.10 9 SBH6/0.50 10 SBH7/0.10 11 SBH8/0.10 12 SBH8/0.50 13 SBH9/0.15 14 SBH10/0.10 15 SBH10/0.50 16 SBH11/0.20 17 SBH12/0.20 18 SBH13/0.50 20 SBH14/0.30 21 SBH15/0.15 22 SBH16/0.20</pre>					mg/kg 320 260 630 340 290 670 450 320 680 340 400 660 440 420 690 300 310 430 700 350 460	Class 8 6 8 7 7 8 8 6 8 6 8 6 8 6 8 6 8 6 8 6
22 SBH16/0.20 23 SBH16/0.50 24 SBH17/0.20 25 SBH17/0.60 26 SBH18/0.15 27 SBH19/0.20 28 SBH20/0.30 29 SBH21/0.30 30 SBH22/0.20 31 SBH23/0.20 32 SBH23/0.70 33 SBH24/0.30 DUPLICATES: 20 SBH14/0.30	$\begin{array}{c} 4.5\\ 4.3\\ 4.1\\ 4.2\\ 4.3\\ 4.5\\ 5.1\\ 4.4\\ 4.7\\ 4.0\\ 4.5\\ 4.8\\ \end{array}$	0.27 0.51 0.43 0.46 0.45 0.42 0.37 0.080 0.12 0.21 0.22 0.28 0.22	5.0 12.8 5.5 11.3 5.0 3.8 4.2 3.9 3.3 3.4 14.5 3.1 4.6	0.3 4.5 0.4 1.0 0.6 1.2 0.9 0.3 0.3 0.6 0.7 0.3 0.6	400 720 430 670 380 320 330 310 300 350 740 290 340	6 8 7 8 6 7 7 6 8 6 6
MDL Method Code Preparation	0.1 C1 P5	0.001 WA2 P5	0.1 S7 P5	0.1 C35 P5	1 S9 P5	C43 P1

RESULTS ON DRY BASIS

Page 3 of 4

S Y D N E Y A N A L Y T I C A L L A B O R A T O R I E S

LABORATORY DUPLICATE REPORT

JOB NO: SAL23973F CLIENT ORDER: SEAHAM

Sample Number	Analyte	Units	MDL	Sample Result	Duplicate Result	%RPD
SBH14/0.30 SBH14/0.30 SBH14/0.30 SBH14/0.30 SBH14/0.30 SBH14/0.30	pH Conductivity CEC ESP *P Sorption *Emerson Class	dS/m cmol+/kg % mg/kg Class	0.1 0.001 0.1 0.1 1	4.7 0.23 4.4 0.5 350 6	4.8 0.22 4.6 0.6 340 6	2 4 17 3 0

Acceptance criteria:

RPD <50% for low level (<20xMDL)
RPD <30% for medium level (20-100xMDL)
RPD <15% for high level (>100xMDL)
No limit applies at <2xMDL</pre>

MDL = Method Detection Limit

All results are within the acceptance criteria

Page 4 of 4

ANALYTICAL REPORT

JOB NO: SAL23973F CLIENT ORDER: SEAHAM

METHODS OF PREPARATION AND ANALYSIS

The tests contained in this report have been carried out on the samples as received by the laboratory.

- P5 Sample dried, split and crushed to -150um
- P1 Analysis performed on sample as received
- C1 pH AS1289.4.3.1

WA2 Conductivity - 1:5 soil/water extract Determined by APHA 2510B

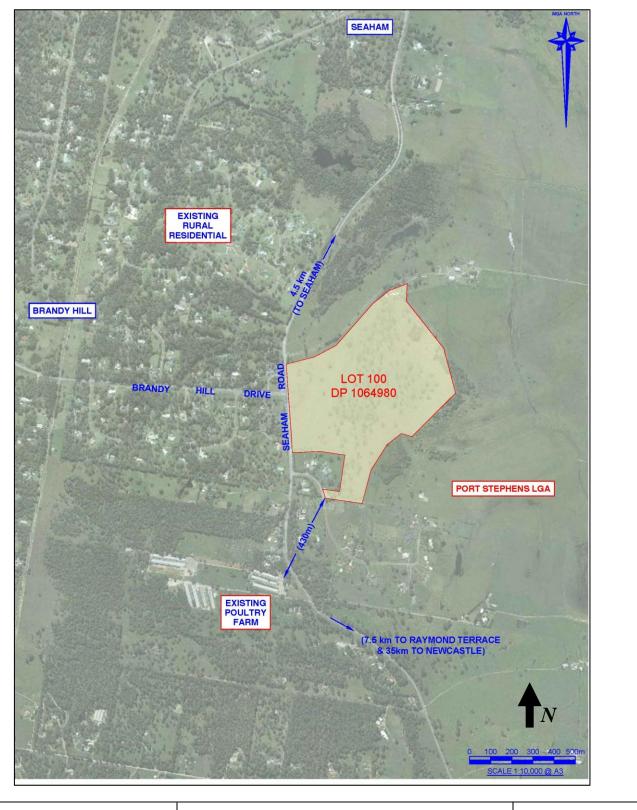
S7 Cation Exchange Capacity & Exchangeable/Soluble Cations Determined by Silver Thiourea Method CEC-1

- C35 Exchangeable Sodium Percentage Silver Thiourea Extract Determined by APHA 3500B
- *S9 Phosphorus Sorption Dept of Agriculture Standard Method Determined by APHA 4500F
- *C43 Modified Emerson Crumb Test: Based on AS1547-1990 Appendix F

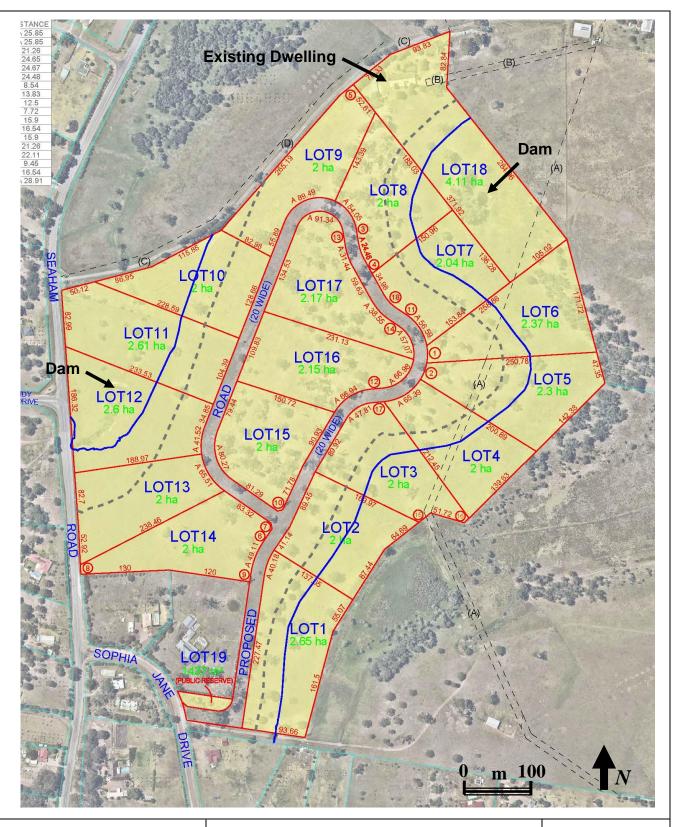
*The laboratory's NATA accreditation does not cover performance of this test

FIGURES

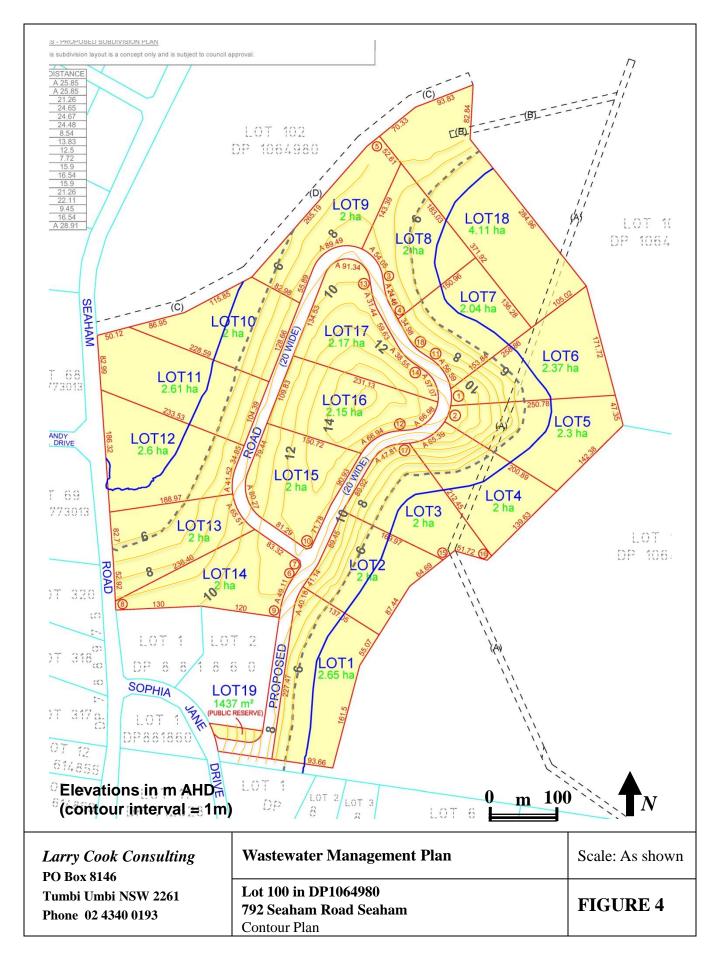
0 m 200

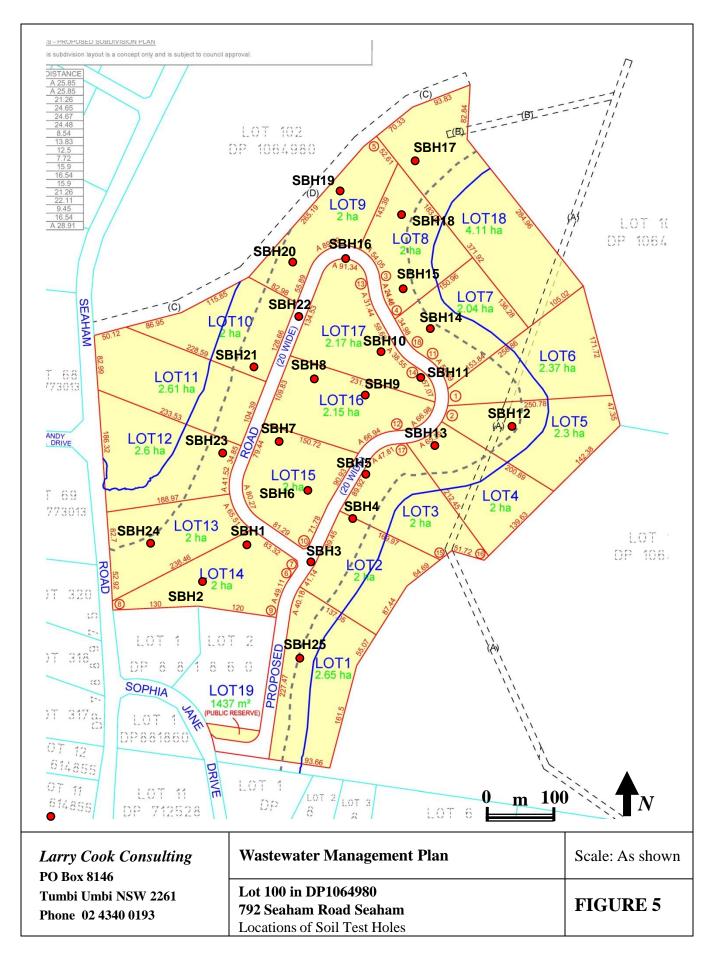

Larry Cook Consulting PO Box 8146 Tumbi Umbi NSW 2261 Phone 02 4340 0193

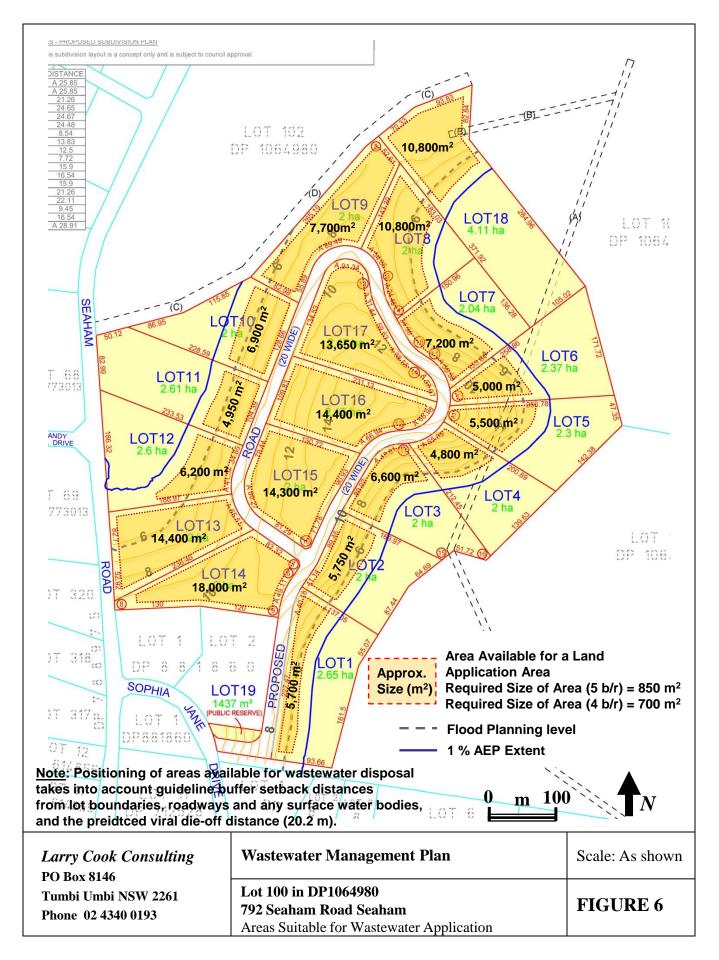
Lot 100 in DP1064980 792 Seaham Road Seaham Lot Plan

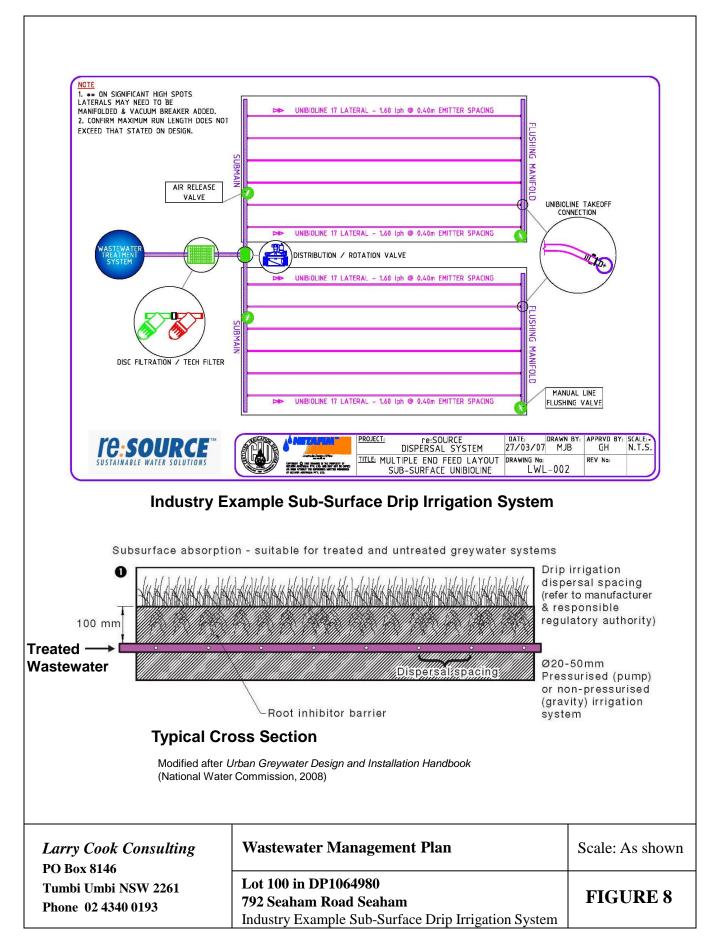

Wastewater Management Plan

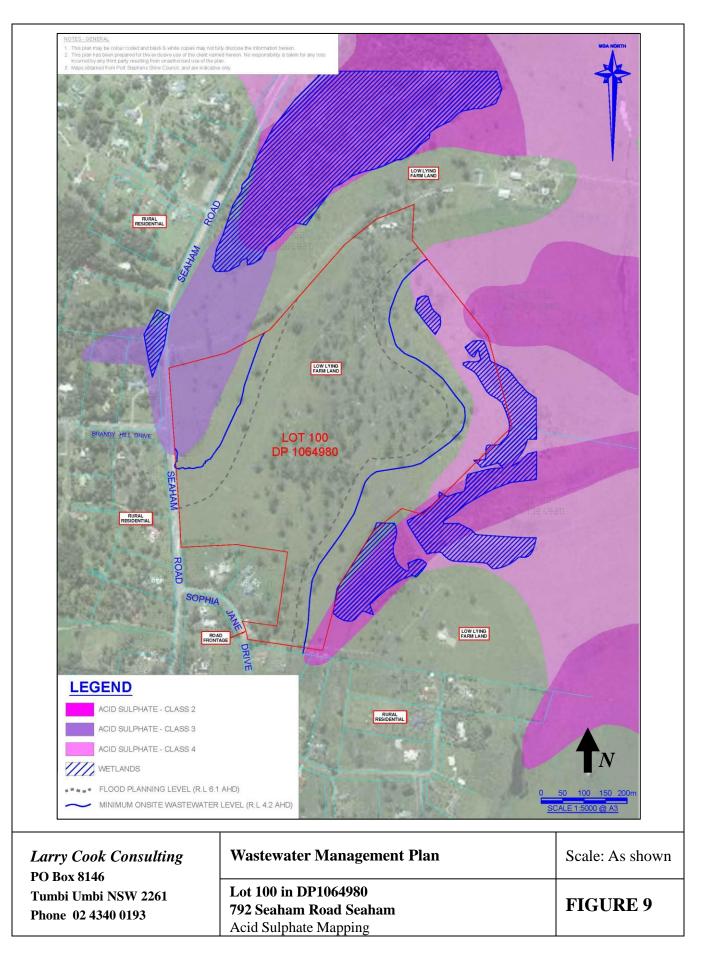
Scale: As shown

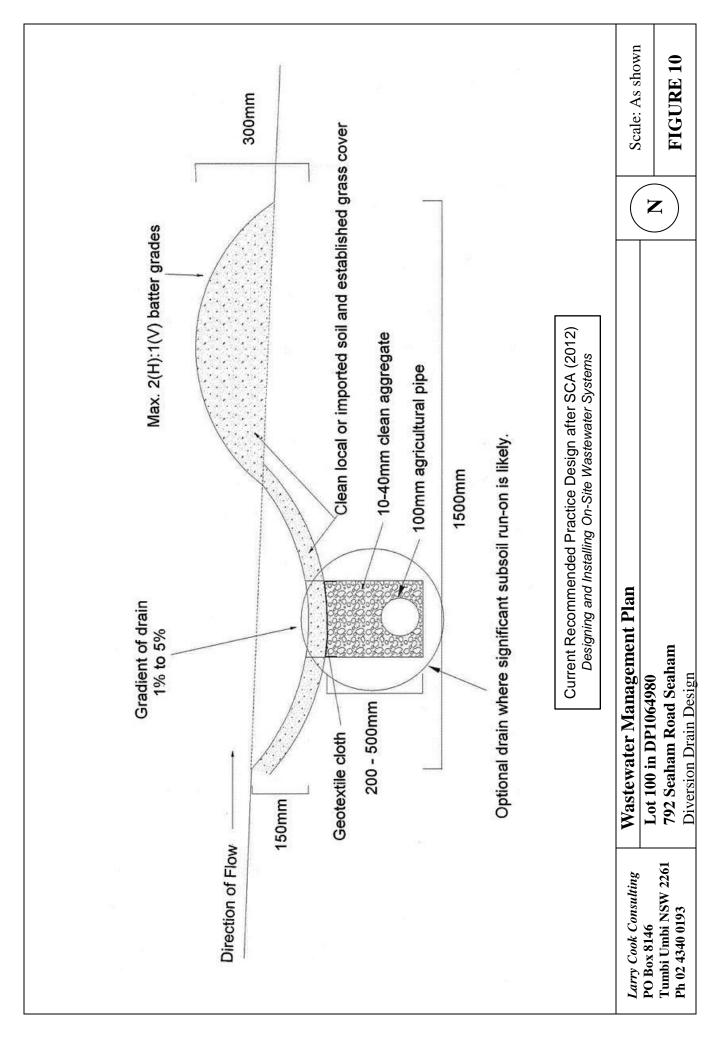

FIGURE 1




<i>Larry Cook Consulting</i> PO Box 8146	Wastewater Management Plan	Scale: As shown
Tumbi Umbi NSW 2261 Phone 02 4340 0193	Lot 100 in DP1064980 792 Seaham Road Seaham Location of Site	FIGURE 2


<i>Larry Cook Consulting</i> PO Box 8146	Wastewater Management Plan	Scale: As shown
Tumbi Umbi NSW 2261 Phone 02 4340 0193	Lot 100 in DP1064980 792 Seaham Road Seaham Site Plan Showing Proposed Subdivision Layout	FIGURE 3





	Land Slope	Not to Scale Manifold Ø 40 From AWTS
Recomme	nded Dripper Line Separation = approx nded Emitter separation = 0.4 m Application Area = 700 – 850 m ²	α. 0.6 – 1.0m
Sub-	Surface Drip Irrigat	tion
	Concept Plan	
Ground - LUAIVIƏ/GRAVI		ition
Larry Cook Consulting	Wastewater Management Plan	Scale: As shown
PO Box 8146 Tumbi Umbi NSW 2261 Phone 02 4340 0193	Lot 100 in DP1064980 792 Seaham Road Seaham Design Sub-Surface Irrigation	FIGURE 7

